Euler Top dynamics of Nambu-Goto p-branes

Minos Axenides ${ }^{a}$ and Emmanuel Floratos ${ }^{a b}$
${ }^{a}$ Institute of Nuclear Physics, N.C.S.R. Demokritos, GR-15310, Athens, Greece
${ }^{b}$ Department of Physics, Univ. of Athens, GR-15771 Athens, Greece
E-mail: axenides@inp.demokritos.gn, mflorato@phys.uoa.gr

Abstract: We propose a method to obtain new exact solutions of spinning p-branes in flat space-times for any p, which manifest themselves as higher dimensional Euler Tops and minimize their energy functional. We provide concrete examples for the case of spherical topology S^{2}, S^{3} and rotational symmetry $\prod_{i} S O\left(q_{i}\right)$. In the case of toroidal topology T^{2}, T^{3} the rotational symmetry is $\prod_{i} S U\left(q_{i}\right)$ with m target dimensions being compactified on the torus T^{m}. By double dimensional reduction the Light Cone Hamiltonians of T^{2}, T^{3} reduce to those of closed string S^{1} and T^{2} membranes respectively. The solutions are interpreted as non-perturbative spinning soliton states of type $I I A-I I B$ superstrings.

Keywords: p-branes, Brane Dynamics in Gauge Theories, M(atrix) Theories, Gauge-gravity correspondence.

Contents

1. Introduction 1
2. Lightcone equations of motion for p-branes and Nambu brackets 3
3. P-brane Euler Tops in higher dimensions 6
4. Spherical p-brane Tops $\left(S^{2}, S^{3}\right)$ 8
$4.1 \quad S^{2}$ Tops 8
$4.2 S^{3}$ Tops 13
5. Toroidal p-brane Tops $\left(T^{2}, T^{3}\right)$ on $C^{k} \times T^{m}$ 16
5.1 T T^{2} spinning Tops 16
5.2 The three dimensional spinning torus T^{3} 20
6. Interpretation of the results - conclusions 24

1. Introduction

One of the most important discoveries in theoretical physics in the last few years has been the connection of the strongly coupled gauge theories to perturbative gravity through the Maldacena conjecture []]. This is only one spectacular result of the UV/IR relation and Holography, discovered in non-commutative geometry of D-branes in gravitational backgrounds with fluxes [2]. In order to understand this connection, the most important tool has been the comparison of the energy spectra of rotating strings, D-branes, p-branes and/or even matrix model rotating solutions in various gravitational backgrounds with the anomalous dimensions of composite operators of the boundary gauge, or more generally, of the conformal field theory. More recently such a comparison has been in the focus due to their connection with Bethe ansatz methods of obtaining the spectra of integrable spin chain models. Impressive agreement on both sides has been obtained [3].

Another interesting development has come about by the use of rotating D_{3} branes in the presence of fluxes giving rise to a stringy exclusion principle as well as the notion of giant graviton [1], [7]. Rotating solutions in backgrounds of pp waves along with their dielectric behaviour in the presence of fluxes has been studied. Their connection with the BPS sector of $N=4$ Super-Yang-Mills theories has been established (50). In a completely different direction Matrix or brane solutions have been interpreted in the framework of Matrix Cosmology [6]. An important class of new nonrelativistic Newton-Hook cosmologies appears from deSitter spacetime backgrounds in the Newton-Hooke limit of $\frac{\Lambda c^{2}}{3}=$ constant as $\Lambda \rightarrow 0$ and $c^{2} \rightarrow \infty$ [7].

Rotating Solutions for strings and p-branes were studied in the first few years of the development of this field by searching for massless particles in their spectra [$[8]$. In the case of superstring theory the full supergravity multiplets have been discovered raising, as a consequence, the string to the status of a more fundamental theory. Much later it was understood that other extended objects, such as D-branes [9] are connected through nonperturbative dualities. This has led to the creation of the hypothesis of M-theory and Matrix model (10].

It is obvious from the above that there is a strong motivation for a more exhaustive search for non-perturbative soliton solutions of string theories such as membranes, 3 -branes and/or matrix model solutions in various backgrounds with or without fluxes. All of these should be compared with known spectra of operators of gauge or conformal field theories. Another interesting application can be the determination of the quantum effective Hamiltonian for p -branes as fundamental objects (11.

In this paper we propose a method to extract new solutions for spinning p-branes in the Light Cone spacetime for any p. By providing concrete examples we continue our search for membrane or matrix solutions [12] in a more systematic way, thus exhausting the class of rotating solutions for S^{2}, T^{2} in flat space times with toroidal compactifications which are consistent with our method. We demonstrate that the rigid body type of Eulerian motion minimizes the energy with a given conserved angular momentum. We extend these solutions to higher dimensionalities of the extended object (e.g. $p=3$ for S^{3}, T^{3}). The method can be applied to any p . In order to achieve this we make use of the lightcone gauge where Nambu brackets play a natural role by expressing the extension of the infinite gauge group from area preserving diffeomorphisms $(p=2)$ to p -volume preserving diffeomorphisms.

Although for $p \geq 3$ there have been efforts to formulate corresponding matrix models [13] we will not attempt to apply our method to these models. We believe that if fluxes are not present (absence of Dielectric Myers effect) matrix models fuzzify only membranes ($p=2$) because of the generic two discrete indices of matrices. Higher values of p which constitute generalizations to multiindexed matrices with p discrete indices are necessary. Unknown mathematical structures for multiplication and more general algebraic operations of these objects must be sought for.

We will restrict ourselves to flat backgrounds with toroidal compactifications. We observe that the world volumes of our solutions live in submanifolds with spherical or toroidal geometry. This property may possibly be used to embed isometrically our solutions into curved spacetime backgrounds with the same world volumes as minimal submanifolds. These embeddings might provide solutions of the extended objects in these specific curved backgrounds (e.g. $A d S^{5} \times S^{5}, A d S^{7} \times S^{4}$ and G^{2}) [14].

We organize our work as follows:
In section 2 we write down the equations of motion and their constraints in the lightcone gauge for p-branes and the matrix model in flat spacetimes. We introduce the Nambu brackets, a minimun set of their properties as well as the definitions of their p-volume preserving diffeomorphisms.

In section 3 we construct the extension of the Euler Top equations of motion to higher dimensions which are appropriate for p-branes. We write the relation between their total
energy, angular momenta and generalized angular velocities. We provide the NASCs in order that a p-brane solution can be characterized as higher dim. Euler Top ("P-Branetops").

In section 4 we apply the Euler Top formalism in order to present solutions for spinning S^{2} and S^{3} branes with rotational symmetries $\prod_{i} S O\left(q_{i}\right)$.

In section 5 we examine the case of the spinning toroidal T^{2} and T^{3} branes including toroidal compactifications with rotational symmetries $\prod_{i} S U\left(q_{i}\right)$.

In the conclusions we interpret the solutions as nonperturbative type IIA-B solitons. Their energy is related non-perturbatively to the corresponding string coupling constants (15]. We close by discussing the relevance of our results to other recent work in the literature.

2. Lightcone equations of motion for p-branes and Nambu brackets

The Light Cone gauge of Nambu-Goto p-branes for flat space-times has been worked out in detail two decades ago [16]. The resulting Hamiltonian for the bosonic sector with zero flux background is given by:

$$
\begin{equation*}
H=\frac{T_{p}}{2} \int d^{p} \xi \sqrt{\gamma}\left[\dot{X}^{i^{2}}+\operatorname{det}\left[\partial_{\alpha} X^{i} \partial_{\beta} X^{i}\right]\right], \quad i=1, \ldots, D-2 \alpha, \beta=1, \ldots, p \tag{2.1}
\end{equation*}
$$

T_{p} is the brane tension, $d^{p} \xi \sqrt{\gamma}$ is the volume element in ξ-space

$$
\begin{equation*}
\partial_{\alpha}=\frac{\partial}{\partial \xi^{\alpha}} \quad \alpha=1, \ldots, p \tag{2.2}
\end{equation*}
$$

It is easy to observe that the potential energy term of the Hamiltonian can be rewritten in terms of the Nambu p-bracket .

$$
\begin{equation*}
\operatorname{det}\left[\partial_{\alpha} X_{i} \partial_{\beta} X_{i}\right]=\frac{1}{p!} \sum_{i_{1}, \ldots, i_{p}=1}^{D-2}\left\{X_{i_{1}}, \ldots, X_{i_{p}}\right\}^{2} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\{f_{1}, \ldots, f_{p}\right\} \equiv \frac{1}{\sqrt{\gamma}} \epsilon^{\alpha_{1} \cdots \alpha_{p}} \partial_{\alpha_{1}} f_{1} \cdots \partial_{\alpha_{p}} f_{p}, \quad \alpha_{1}, \ldots, \alpha_{p}=1, \ldots, p \tag{2.4}
\end{equation*}
$$

The eqs of motion in terms of Nambu p-brackets read:

$$
\begin{align*}
\ddot{X}= & \frac{1}{(p-1)!}\left\{\left\{X_{i}, X_{j_{1}}, \ldots, X_{j_{D-1}}\right\}, X_{j_{1}}, \ldots, X_{j_{p-1}}\right\} \tag{2.5}\\
& i, j_{1}, \ldots, j_{p-1}=1,2, \ldots, D-2
\end{align*}
$$

The p-dimensional reparametrization invariance of the Lagrangian has been reduced after LC gauge fixing to p-volume preserving diffeomorphisms of the brane manifold M_{p}, VolDiffs $\left[M_{p}\right]$ [16]. This infinite dimensional gauge group contains elements not connected with the identity depending on the topology of M_{p}. The VolDiffs $\left[M_{p}\right]$ connected to the identity gauge transformations are generated by the constraints

$$
\begin{align*}
\left\{\dot{X}_{i}, X_{i}\right\}_{\alpha, \beta} & \equiv \frac{1}{V_{\alpha \beta}}\left(\partial_{\alpha} \dot{X}_{i} \partial_{\beta} \dot{X}_{i}-\partial_{\beta} \dot{X}_{i} \partial_{\alpha} X_{i}\right)=0, \\
\alpha, \beta & =1,2, \ldots, p \tag{2.6}
\end{align*}
$$

where $V_{\alpha \beta}$ is the $\xi_{\alpha}, \xi_{\beta}$ part of the volume element $d^{p} \xi \sqrt{\gamma}$. The Nambu bracket is a generalization of the Poisson bracket of Classical Mechanics to "phase space" of any dimension p [17. It is a completely antisymmetric multilinear function of f_{1}, \ldots, f_{p} and satisfies two additional properties (α) Leibniz

$$
\begin{equation*}
\left\{f_{1} \cdot g_{1}, f_{2}, \ldots, f_{p}\right\}=f_{1}\left\{g_{1}, f_{2}, \ldots, f_{p}\right\}+g_{1}\left\{f_{1}, \ldots, f_{p}\right\} \tag{2.7}
\end{equation*}
$$

and (β) the Fundamental Identity which generalizes the Jacobi identity. Furthermore, it generalizes Lie algebras and Poisson Manifolds to Nambu-Poisson and Nambu-Lie structures which turn out to be more rigid.

$$
\begin{aligned}
& \left\{\left\{f_{1}, f_{2}, \ldots, f_{p}\right\}, f_{p+1}, \ldots, f_{2 p-1}\right\}+\left\{f_{p},\left\{f_{1}, f_{2}, \ldots, f_{p-1}, f_{p+1}\right\}, f_{p+2}, \ldots, f_{2 p-1}\right\}+\ldots \text { (2.8) } \\
& +\left\{f_{p},, f_{p+1}, \ldots, f_{2 p-2},\left\{f_{1}, f_{2}, \ldots, f_{p-1}, f_{2 p-1}\right\}\right\}=\left\{f_{1}, f_{2}, \ldots, f_{p-1},\left\{f_{p}, f_{p+1}, \ldots, f_{2 p-1}\right\}\right\}
\end{aligned}
$$

There is one very interesting property of the Nambu bracket for spherical and toroidal p-branes . For S^{p} - p-dim. branes of spherical topology there is a natural system of functions e_{1}, \ldots, e_{p+1} of the angles $\Omega=\left(\phi, \theta_{1}, \theta_{2}, \ldots\right)$ where a unit vector in the direction Ω in $p+1$ dimensional Euclidean space is expressed as

$$
\begin{equation*}
\hat{r}=\left(e_{1}, \ldots, e_{p+1}\right) \tag{2.9}
\end{equation*}
$$

with

$$
\begin{equation*}
e_{1}^{2}+\ldots+e_{p+1}^{2}=1 \tag{2.10}
\end{equation*}
$$

These functions (polar coordinates of $p+1$-vectors) can be easily checked to satisfy

$$
\begin{equation*}
\left\{e_{i_{1}}, \ldots, e_{i_{p}}\right\}=\epsilon_{i_{1} \cdots i_{p} i_{p+1}} e_{i_{p+1}}, \quad i_{1}, \ldots, i_{p+1}=1, \ldots, p+1 \tag{2.11}
\end{equation*}
$$

For $p=2$ they are

$$
\begin{equation*}
\left(e_{1}, e_{2}, e_{3}\right)=(\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta) \tag{2.12}
\end{equation*}
$$

Similarly for $p=3$ we have

$$
\begin{equation*}
\left(e_{1}, e_{2}, e_{3}, e_{4}\right)=\left(\cos \phi \sin \theta_{1} \sin \theta_{2}, \sin \phi \sin \theta_{1} \sin \theta_{2}, \cos \theta_{1} \sin \theta_{2} \cos \theta_{2}\right) \tag{2.13}
\end{equation*}
$$

The corresponding volume elements are:

$$
\begin{equation*}
p=2 d^{2} \Omega=\sin \theta d \theta d \phi \tag{2.14}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
p=3 \quad d^{3} \Omega=\sin ^{2} \theta_{2} \sin \theta_{1} d \theta_{1} d \theta_{2} d \phi \tag{2.15}
\end{equation*}
$$

The Poisson and Nambu brackets are defined correspondingly as

$$
\begin{equation*}
\left\{f_{1}, f_{2}\right\} \stackrel{p=2}{=} \frac{1}{\sin \theta}\left(\partial_{\theta} f_{1} \partial_{\phi} f_{2}-\partial_{\phi} f_{1} \partial_{\theta} f_{2}\right) \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{f_{1}, f_{2}, f_{3}\right\} \stackrel{p=3}{=} \frac{1}{\sin ^{2} \theta_{2} \sin \theta_{1}} \epsilon^{\alpha \beta \gamma} \partial_{\alpha} f_{1} \partial_{\beta} f_{2} \partial_{\gamma} f_{3} \tag{2.17}
\end{equation*}
$$

with $\alpha, \beta, \gamma=\theta_{1}, \theta_{2}, \phi$. For the torus T^{p} we have a flat measure for any $\mathrm{p}, d \omega=d \sigma_{1} \cdots d \sigma_{p}$ where

$$
\begin{equation*}
\sigma_{\alpha} \in(0,2 \pi), \quad \alpha=1, \ldots, p \tag{2.18}
\end{equation*}
$$

the basis functions are

$$
\begin{equation*}
e_{\vec{n}}=e^{i \vec{n} \cdot \vec{\sigma}} \quad \vec{n} \in \mathcal{Z}^{p} \tag{2.19}
\end{equation*}
$$

while their Nambu brackets are

$$
\begin{equation*}
\left\{e_{\overrightarrow{n_{1}}}, \ldots, e_{\overrightarrow{n_{p}}}\right\}=i^{p} \operatorname{det}\left(\overrightarrow{n_{1}}, \ldots, \overrightarrow{n_{p}}\right) \cdot e^{i\left(\overrightarrow{n_{1}}+\cdots+\overrightarrow{n_{p}}\right) \cdot \vec{\sigma}} \tag{2.20}
\end{equation*}
$$

Volume preserving transformation can be defined through the Nambu bracket. For fixed f_{1}, \ldots, f_{p-1} functions on the p-brane we define the generator

$$
\begin{equation*}
L_{\left(f_{1}, \ldots, f_{p-1}\right)} f=\left\{f_{1}, \ldots, f_{p-1}, f\right\} \tag{2.21}
\end{equation*}
$$

if f is functionally dependent on f_{1}, \ldots, f_{p-1} the result is zero. The operation is restricted to satisfy fundamental identity (2.8). As an example for the 3 -sphere S^{3} for any two of the four functions $e_{1}, e_{2}, e_{3}, e_{4}$ the operator

$$
\begin{equation*}
L\left(e_{i}, e_{j}\right) f=\left\{e_{i}, e_{j}, f\right\} \tag{2.22}
\end{equation*}
$$

executes a rotation on the plane i, j and in general if $\alpha=\alpha_{i} \cdot e_{i}, \beta=\beta_{j} \cdot e_{j}$ with $\left(\alpha_{i}, \beta_{j} \in \mathcal{R}\right)$,

$$
\begin{equation*}
L_{\alpha, \beta} f=\{\alpha, \beta, f\} \tag{2.23}
\end{equation*}
$$

executes a rotation in the plane (α, β). In a future work we shall present the structure of the algebras (2.11) for S^{p}, T^{p}.

The case $p=2$ corresponds to the supermembrane and in this case there is a M (atrix) discretization by Goldstone, Gardner, Hoppe [18] which was revived in the late 80's [16] and late 90 's as the M (atrix) model 10 proposal for M-theory. In the place of Poisson brackets one has commutators and in the place of target space $X_{i}\left(\xi_{1}, \xi_{2}, t\right), i=1, \ldots, D-2$ of membrane coordinates one has $N \times N$ Hermitian matrices $A_{i}(t)$ (YM-mechanics in the Light Cone $10+1$ dimensions). In $3+1$ dimensions Yang-Mills mechanics was first studied by G.Savvidy 19. The equations of motion and constraints are given by:

$$
\begin{equation*}
\ddot{A}_{i}=-\left[\left[A_{i}, A_{j}\right], A_{i}\right] \quad i, j=1, \ldots, D-2 \tag{2.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\dot{A}_{i}, A_{i}\right]=0 \tag{2.25}
\end{equation*}
$$

For the case of factorization of the time ansatz (12] it has been noticed that there is an isomorphism between the membrane $p=2$ and the matrix model solutions. As a consequence any $p=2$ spinning solution gives rise to a M (atrix) model solution. In the next section we will find the conditions for this type of motion by generalizing the Euler eqs for Rigid Body Motion of classical mechanics for p-branes in higher dimension.

3. P-brane Euler Tops in higher dimensions

In this part we derive the Euler eqs. for the purely rotational solutions of p-branes for any p. This type of motion presumably is the lowest in energy. Vibrational motion in radial or other directions costs more energy. Since p-branes possess elastic tension their equilibrium shape is controlled, for purely rotational motion, by the balance between the rotational forces and tension. We will specify the necessary and sufficient condition for this equilibrium ansatz.

The rotational or Euler Top motions of p-branes can be described by choosing some initial configuration $X_{o}^{i}(\xi), \xi=\left(\xi_{1}, \ldots, \xi_{p}\right)$, and

$$
\begin{equation*}
X^{i}(t)=R^{i j} X_{o}^{j}(\xi), \quad i, j=1, \ldots, D-2 \tag{3.1}
\end{equation*}
$$

where R is a time dependent rotation matrix, $R \in S O(D-2)$ i.e. such that $R^{T}=R^{-1}, R(t=$ $0)=I$ the $(D-2) \times(D-2)$ identity matrix. Let us introduce the moments of inertial tensor in the brane frame

$$
\begin{equation*}
I_{B}^{i k}=T_{p} \int d^{p} \xi \sqrt{\gamma} X_{o}^{i}(\xi) X_{o}^{k}(\xi), \quad i, k=1, \ldots, D-2 \tag{3.2}
\end{equation*}
$$

and the angular momentum tensor which is conserved in the fixed space coordinate frame

$$
\begin{equation*}
L_{S}^{i j}=T_{p} \int d^{p} \xi \sqrt{\gamma}\left(\dot{X}^{i} X^{j}-\dot{X}^{j} X^{i}\right), \quad i, j=1, \ldots, D-2 \tag{3.3}
\end{equation*}
$$

The two frames, Brane and Space, are connected through the Rotation Matrix R. We introduce the angular momentum in the Brane frame L_{B} and the Moment of Inertia in the Space Frame I_{S}

$$
\begin{equation*}
I_{S}=R(t) \cdot I_{B} \cdot R^{-1}(t) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{B}=R^{-1}(t) \cdot L_{S} \cdot R(t) \tag{3.5}
\end{equation*}
$$

The linking quantity between the angular momentum L and the moment of inertia tensor I is of course the angular velocity matrix in the two frames:

$$
\begin{equation*}
\omega_{S}=\dot{R} R^{-1} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{B}=R^{-1} \dot{R} \tag{3.7}
\end{equation*}
$$

From the above definitions we obtain

$$
\begin{equation*}
L_{B}=\omega_{B} I_{B}+I_{B} \omega_{B} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{S}=\omega_{S} I_{S}+I_{S} \omega_{S}=R \cdot L_{B} \cdot R^{-1} \tag{3.9}
\end{equation*}
$$

From the conservation of L_{S} we obtain

$$
\begin{equation*}
\dot{L}_{B}+\left[\omega_{B}, L_{B}\right]=0 \tag{3.10}
\end{equation*}
$$

and from (3.8) the Euler eqs 20

$$
\begin{equation*}
\dot{\omega}_{B} I_{B}+I_{B} \dot{\omega}_{B}+\left[\omega_{B}^{2}, I_{B}\right]=0 \tag{3.11}
\end{equation*}
$$

The above equation discloses the richness of rigid body dynamics generalized to higher dimensions [20]. For the p-branes rotational motion we make the ansatz (3.1). The constraints impose the condition on $\omega_{B}(t=0)=\omega_{B_{o}}$

$$
\begin{equation*}
\omega_{B_{o}}^{i j}\left\{X_{o}^{i}, X_{o}^{j}\right\}_{\xi_{\alpha}, \xi_{\beta}}=0, \quad \alpha, \beta=1, \ldots, p \tag{3.12}
\end{equation*}
$$

This condition is easily satisfied if we partition the i, j range into a direct sum structure $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots$

$$
\begin{equation*}
\omega_{B_{o}}=\omega_{B_{o}}^{1} \oplus \omega_{B_{o}}^{2} \oplus \cdots \tag{3.13}
\end{equation*}
$$

and impose $\left\{X_{o}^{i_{q}}, X_{o}^{j_{q}}\right\}_{\xi_{\alpha}, \xi_{\beta}}=0, \forall q=1,2, \ldots$ This is the general structure of our ansatz in the next sections for $S^{2}, S^{3}, T^{2}, T^{3}$. On the other hand the eqs. of motion (2.5) produce the following additional constraints:

$$
\begin{align*}
& v^{i j} X_{o}^{j}= \frac{1}{(p-1)!}\left\{\left\{X_{o}^{i}, X_{o}^{k_{1}}, \ldots, X_{o}^{k_{p-1}}\right\}, X_{o}^{k_{1}}, \ldots, X_{o}^{k_{p-1}}\right\} \tag{3.14}\\
& i, k_{1}, \ldots, k_{p-1}=1, \ldots, D-2
\end{align*}
$$

where for all times

$$
\begin{equation*}
v^{i j} \equiv\left(R^{-1} \ddot{R}\right)^{i j} \tag{3.15}
\end{equation*}
$$

and X_{o}^{i} should close the algebra (3.14). In what follows, we are going to see that this is guaranteed for special functions X_{o}^{i}. The implication of rel.(3.15) is that

$$
\begin{equation*}
\ddot{R}=R \cdot v \tag{3.16}
\end{equation*}
$$

with $R(t=0)=I, R^{T} R=I$ and v is constant. The only solution to these requirements is

$$
\begin{equation*}
R(t)=e^{\Omega \cdot t}, \quad \Omega^{T}=-\Omega \tag{3.17}
\end{equation*}
$$

and thus v is a symmetric non-negative definite matrix

$$
\begin{equation*}
v=\Omega^{2} \tag{3.18}
\end{equation*}
$$

The energetics of this ansatz goes as follows. The energy of the configuration

$$
\begin{equation*}
E=\frac{T_{p}}{2} \int d^{p} \xi \sqrt{\gamma}\left[\dot{R}^{i j} X_{o}^{j} X_{o}^{k} \dot{R}^{k i}+\frac{1}{p!}\left\{X_{o}^{i_{1}}, \ldots, X_{o}^{i_{p}}\right\}^{2}\right] \tag{3.19}
\end{equation*}
$$

consists of two conserved pieces: The potential energy V

$$
\begin{equation*}
V=\frac{T_{p}}{2 p!} \int d^{p} \xi \sqrt{\gamma}\left\{X_{o}^{i_{1}}, \ldots, X_{o}^{i_{p}}\right\}^{2} \tag{3.20}
\end{equation*}
$$

and the kinetic energy which is expressed in terms of the conserved angular momentum (L_{S} is minus the usual angular momentum)

$$
\begin{equation*}
E_{\text {kin }}=-\frac{1}{2} \operatorname{tr} \omega_{S} \cdot I_{S} \cdot \omega_{S}=-\frac{1}{4} \operatorname{tr} L_{S} \cdot \omega_{S} \tag{3.21}
\end{equation*}
$$

By integrating the equation of equilibrium of forces after multiplying by X_{o}^{i} eq. (3.14) we get for the potential energy:

$$
\begin{equation*}
T_{p} \int d^{p} \xi \sqrt{\gamma} v^{i j} X_{o}^{i} X_{o}^{j}=-\frac{T_{p}}{(p-1)!} \int d^{p} \xi \sqrt{\gamma}\left\{X_{o}^{i_{1}}, \ldots, X_{o}^{i_{p}}\right\}^{2}=-2 p V \tag{3.22}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{trv} \cdot I_{B}=-2 p V \tag{3.23}
\end{equation*}
$$

From (3.6)-(3.7) we obtain (virial theorem)

$$
\begin{equation*}
\omega_{B}=\omega_{S}=\Omega \tag{3.24}
\end{equation*}
$$

and thus

$$
\begin{align*}
V & =-\frac{1}{2 p} \operatorname{tr} \Omega^{2} I_{B} \tag{3.25}\\
E_{\mathrm{kin}} & =-\frac{1}{2} \operatorname{tr} \Omega^{2} I_{B}=p V \tag{3.26}
\end{align*}
$$

and

$$
\begin{equation*}
E_{\mathrm{tot}}=-\left(\frac{1}{2}+\frac{1}{2 p}\right) \operatorname{tr} \Omega^{2} I_{B} \tag{3.27}
\end{equation*}
$$

Finally the relation of $E_{\text {tot }}$ to the conserved angular momenta is

$$
\begin{equation*}
E_{\mathrm{tot}}=-\frac{1}{4}\left(1+\frac{2}{p}\right) \operatorname{tr} \Omega L_{S} \tag{3.28}
\end{equation*}
$$

4. Spherical p-brane Tops $\left(S^{2}, S^{3}\right)$

4.1 S^{2} Tops

In this section we exhibit new spinning $p=2$ and $p=3$ spherical brane solutions with rotational symmetries $\prod_{i} S O\left(q_{i}\right)$. We render transparent the role of the symmetry algebras which are formed by the Nambu-Poisson brackets and clarify the minimun energy character of the p-Euler Tops. For $S^{2}(p=2)$ the relevant $S O(3)$ algebra for the basis functions

$$
\begin{align*}
\left(e_{1}, e_{2}, e_{3}\right) & =(\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta) \\
\left\{e_{i}, e_{j}\right\} & =-\epsilon_{i j k} e_{k} \tag{4.1}
\end{align*}
$$

is responsible for the polynomially generated universal enveloping algebra, the $\operatorname{SDiff}\left(S^{2}\right)$. It is known that the only finite dimensional subalgebras of $\operatorname{SDiff}\left(S^{2}\right)$ is $S O(3)$. Thus factorization with a finite number of time dependent modes can be found by using only the e_{i} s. We propose a generalization of embeddings for S^{2} in $9-d i m$.

$$
\begin{equation*}
R^{9}=R^{q_{1}} \times R^{q_{2}} \times R^{q_{3}}, \quad q_{1}+q_{2}+q_{3}=9 \tag{4.2}
\end{equation*}
$$

as follows:

$$
\begin{align*}
X_{i} & \equiv x_{i}(t) \cdot e_{1} \\
Y_{j} & \equiv X_{q_{1}+j}=y_{j} \cdot e_{2} \\
Z_{k} & \equiv X_{q_{1}+q_{2}+k}=z_{k} \cdot e_{3} \tag{4.3}
\end{align*}
$$

where $\left(i, j, k=1, \ldots, q_{1}, q_{2}, q_{3}\right)$ respectively with $q_{1}+q_{2}+q_{3}=9$ and the q_{i} s are nonzero integers. The case $q_{1}=q_{2}=q_{3}=2$ for the matrix model has been studied in ref. 21, 22] while for the membrane in ref [12, 22]. In principle one of the $q_{i}, i=1,2,3$ may be zero. The constraints

$$
\begin{equation*}
\sum_{i=1}^{9}\left\{\dot{X}_{i}, X_{i}\right\}=0 \tag{4.4}
\end{equation*}
$$

are automatically satisfied.
The functions x_{i}, y_{j}, z_{k} functions which determine the simultaneous time evolution of every point of S^{2} in R^{9} satisfy the eqs. of motion

$$
\begin{equation*}
\ddot{\vec{x}}=-\vec{x}\left(r_{y}^{2}+r_{z}^{2}\right) \tag{4.5}
\end{equation*}
$$

By cyclic permutation on the x, y, z one obtains similarly the eqs for \vec{y} and \vec{z} with $\vec{x}=\left(x_{1}, \ldots, x_{q_{1}}\right), \vec{y}=\left(y_{1}, \ldots, y_{q_{2}}\right), \vec{z}=\left(z_{1}, \ldots, z_{q_{3}}\right)$ and

$$
\begin{equation*}
r_{x}^{2}=\sum_{i=1}^{q_{1}} x_{i}^{2}, \quad r_{y}^{2}=\sum_{j=1}^{q_{2}} y_{j}^{2}, \quad r_{z}^{2}=\sum_{k=1}^{q_{3}} z_{k}^{2} \tag{4.6}
\end{equation*}
$$

We see that eqs. (4.3) admit an $S O\left(q_{1}\right) \times S O\left(q_{2}\right) \times S O\left(q_{3}\right) \subset S O(9)$ rotational symmetry. The Hamiltonian of the ansatz

$$
\begin{equation*}
H=\frac{T_{2}}{2} \int_{S^{2}} d^{2} \xi\left[\dot{X}_{i}^{2}+\frac{1}{2}\left\{X_{i}, X_{j}\right\}^{2}\right] \tag{4.7}
\end{equation*}
$$

can be calculated by the use of the orthogonality relation

$$
\begin{equation*}
\int_{S^{2}} d^{2} \xi e_{k} \cdot e_{l}=\frac{4 \pi}{3} \delta_{k, l}, \quad k, l=1,2,3 \tag{4.8}
\end{equation*}
$$

We find

$$
\begin{equation*}
E=\frac{2 \pi}{3} T_{2}\left[\dot{\vec{x}}^{2}+\dot{\vec{y}}^{2}+\dot{\vec{z}}^{2}+r_{x}^{2} r_{y}^{2}+r_{x}^{2} r_{z}^{2}+r_{y}^{2} r_{z}^{2}\right] \tag{4.9}
\end{equation*}
$$

In order to relate the Energy with $S O\left(d_{1}\right), S O\left(d_{2}\right), S O\left(d_{3}\right)$ angular momenta we observe that for each component separately we have

$$
\begin{equation*}
\left(L_{z}\right)_{m n}=\frac{4 \pi T_{2}}{3}\left(l_{z}\right)_{m, n}, \quad m, n=1, \ldots, q_{3} \tag{4.10}
\end{equation*}
$$

The same will hold true for $\left(L_{y}\right)_{k l}$ and $\left(L_{x}\right)_{i j}$ with $k, l=1, \ldots, q_{2}$ and $i, j=1, \ldots, q_{1}$ respectively.

Here l_{x}, l_{y}, l_{z} are given by

$$
\begin{equation*}
\left(l_{x}\right)_{i j}=\dot{x}_{i} x_{j}-\dot{x}_{j} x_{i} \tag{4.11}
\end{equation*}
$$

Similarly for $\left(l_{y}\right)_{k l}$ and $\left(l_{z}\right)_{m n}$.
The higher dimensional kinetic terms $\dot{\vec{x}}^{2}, \ldots$ can be expressed in terms of the radial and angular variables as:

$$
\begin{equation*}
\dot{\vec{x}}^{2}=\dot{r}_{x}^{2}+\frac{l_{x}^{2}}{r_{x}^{2}} \tag{4.12}
\end{equation*}
$$

Then the energy is given in terms of l_{x}, l_{y}, l_{z} and r_{x}, r_{y}, r_{z} as:

$$
\begin{equation*}
E=\frac{2 \pi T_{2}}{3}\left(E_{\text {kin }}+V_{\text {eff }}\right) \tag{4.13}
\end{equation*}
$$

where

$$
\begin{align*}
E_{\text {kin }} & =\dot{r}_{x}^{2}+\dot{r}_{y}^{2}+\dot{r}_{z}^{2} \\
V_{\mathrm{eff}} & =\frac{l_{x}^{2}}{r_{x}^{2}}+\frac{l_{y}^{2}}{r_{y}^{2}}+\frac{l_{z}^{2}}{r_{z}^{2}}+r_{x}^{2} r_{y}^{2}+r_{x}^{2} r_{z}^{2}+r_{y}^{2} r_{z}^{2} \tag{4.14}
\end{align*}
$$

We are now in the position to make the connection between this ansatz and the Euler-Top formalism of ch.3. Due to the breaking of rotational symmetry $S O(9)$ to $S O\left(q_{1}\right) \times S O\left(q_{2}\right) \times$ $S O\left(q_{3}\right)$ the time-evolution of the vector $\vec{x}(t), \vec{y}(t), \vec{z}(t)$ is described by:

$$
\begin{align*}
& \vec{x}(t)=e^{\Omega_{x} \cdot t} \vec{x}_{o} \\
& \vec{y}(t)=e^{\Omega_{y} \cdot t} \vec{y}_{o} \\
& \vec{z}(t)=e^{\Omega_{z} \cdot \vec{z}_{o}} \tag{4.15}
\end{align*}
$$

By using $S O\left(q_{1}\right), S O\left(q_{2}\right), S O\left(q_{3}\right)$ rotations we can bring the vectors $\vec{x}_{o}, \vec{y}_{o}, \vec{z}_{o}$ to their corresponding first axes:

$$
\begin{array}{ll}
\vec{x}_{o}=R_{x}(1, \ldots, 0) & q_{1}-\text { components } \\
\vec{y}_{o}=R_{y}(1, \ldots, 0) & q_{2}-\text { components } \\
\vec{z}_{o}=R_{z}(1, \ldots, 0) & q_{3}-\text { components } \tag{4.16}
\end{array}
$$

By keeping the position vectors fixed we can bring the initial velocities to the planes $x^{1} x^{2}$, $y^{1} y^{2}, z^{1} z^{2}$. Thus each $\Omega_{i}(i=x, y, x)$ angular velocity matrix becomes

$$
\Omega_{i}=\left(\begin{array}{cc}
0 & -\omega_{i} \tag{4.17}\\
\omega_{i} & 0
\end{array}\right)
$$

in their respective planes and zero for all others. The moment of inertia tensor acquires a similar form:

$$
\begin{align*}
I_{B} & =I_{x} \oplus I_{y} \oplus I_{z} \\
I_{i} & =\frac{2 \pi T_{2}}{3}\left(\begin{array}{rr}
R_{i}^{2} & 0 \\
0 & 0
\end{array}\right), \quad i=x, y, z \tag{4.18}
\end{align*}
$$

and so $L_{B}=L_{S}$ where

$$
\begin{align*}
L_{B} & =\omega_{x} I_{x}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \oplus \omega_{x} I_{x}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \oplus \omega_{x} I_{x}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
& \equiv L_{x} \oplus L_{y} \oplus L_{z} \tag{4.19}
\end{align*}
$$

The total energy according to rel. (3.28) is:

$$
\begin{equation*}
E=\frac{1}{2}\left(\omega_{x}^{2} I_{x}+\omega_{y}^{2} I_{y}+\omega_{z}^{2} I_{z}\right) \tag{4.20}
\end{equation*}
$$

The balance of force condition (or eq. of motion) relates the angular momenta with the radii of rotation as

$$
\begin{equation*}
\omega_{x}^{2}=R_{y}^{2}+R_{z}^{2} \tag{4.21}
\end{equation*}
$$

Similarly for ω_{y} and ω_{z}.
These equations are identical to the ones obtained from the minimization of the effective potential $V_{\text {eff }}(4.10)$ which lead to constant radii solutions:

$$
\begin{equation*}
r_{i}=R_{i}, \quad i=x, y, z \tag{4.22}
\end{equation*}
$$

We now proceed to present details of the solutions of the minimization conditions which provide an interesting complex dependence of the Energy (4.20) on the angular momenta $L_{x}, L_{y} \cdot L_{z}$. The extrema of the Energy are given by constant in time radii r_{x}, r_{y}, r_{z} satisfying:

$$
\begin{equation*}
\frac{\partial V_{\mathrm{eff}}}{\partial r_{x}}=-\frac{2 l_{x}^{2}}{r_{x}^{3}}+2 r_{x}\left(r_{y}^{2}+r_{z}^{2}\right)=0 \tag{4.23}
\end{equation*}
$$

and so on for r_{y}, r_{z}. The system of equations obtained are

$$
\begin{equation*}
r_{x}^{4}\left(r_{y}^{2}+r_{z}^{2}\right)=l_{x}^{2} \tag{4.24}
\end{equation*}
$$

By permutation symmetry $x \leftrightarrow y, l_{x} \leftrightarrow l_{y}, \ldots$ etc one gets the rest which can be solved for general $l_{x}^{2}, l_{y}^{2}, l_{z}^{2}$.

We exhibit solutions only for the two simplest cases:

$$
\begin{equation*}
l_{i}^{2} \equiv l^{2}, \quad r_{i}^{2} \equiv r^{2}, \quad i=x, y, z \tag{4.25}
\end{equation*}
$$

the completely symmetric case (S) and

$$
\begin{equation*}
l_{x}^{2}=l_{y}^{2}=l^{2} \neq l_{z}^{2}, \quad r_{x}^{2}=r_{y}^{2}=r_{\alpha}^{2} \neq r_{z}^{2} \tag{4.26}
\end{equation*}
$$

the axially symmetric case (A). Before that though we will demonstrate that the extrema (4.22) are local minima of the energy. Indeed, by taking the second variation of the potential at the extrema [12, 22];

$$
\left.\frac{\partial^{2} V}{\partial r_{i} \partial r_{j}}\right|_{i, j=x, y, z}=4\left(\begin{array}{ccc}
2\left(r_{y}^{2}+r_{z}^{2}\right) & r_{x} r_{y} & r_{x} r_{z} \tag{4.27}\\
r_{y} r_{x} & 2\left(r_{x}^{2}+r_{z}^{2}\right) & r_{y} r_{z} \\
r_{z} r_{x} & r_{z} r_{y} & 2\left(r_{x}^{2}+r_{y}^{2}\right)
\end{array}\right)
$$

we check that this is a real symmetric matrix (real eigenvalues) but also positive definite (positive eigenvalues) i.e. for arbitrary real vectors $\xi_{i} \in \mathcal{R}, i=x, y, z$ we find

$$
\begin{equation*}
\xi_{i} \xi_{j} \frac{\partial^{2} V}{\partial r_{i} \partial r_{j}}>0 \tag{4.28}
\end{equation*}
$$

We shall compare now energetically the symmetric with the axially symmetric cases (4.25) -$-(4.26)$. For the symmetric case (S) we find

$$
\begin{equation*}
r_{S}^{2} \equiv r^{2}=\left(\frac{l^{2}}{2}\right)^{1 / 3}, \quad V_{\mathrm{eff}}^{\min }=V_{S}=\frac{9}{4^{1 / 3}} \cdot\left(l^{2}\right)^{2 / 3} \tag{4.29}
\end{equation*}
$$

For the axially symmetric case we find

$$
\begin{align*}
r_{z}^{2} & =\frac{l_{z}}{2 l^{2 / 3}}\left(l_{z}+\sqrt{l_{z}^{2}+8 l^{2}}\right)^{1 / 3} \\
r_{\alpha}^{2} & =\frac{2 l^{4 / 3}}{\left(l_{z}+\sqrt{l_{z}^{2}+8 l^{2}}\right)^{2 / 3}} \tag{4.30}\\
V_{\text {eff }}^{\min } & \equiv V_{\alpha}=\frac{6 l^{2 / 3}}{\left(l_{z}+\sqrt{l_{z}^{2}+8 l^{2}}\right)^{4 / 3}}\left[l_{z}\left(l_{z}+\sqrt{l_{z}^{2}+8 l^{2}}\right)+2 l^{2}\right]
\end{align*}
$$

In order to compare the two minima we rescale $l_{z}=\lambda l$ and we identify it (l) in each of the two cases. We find for the ratio

$$
\begin{equation*}
\frac{V_{\alpha}}{V_{s}}=f(\lambda)=\frac{2^{5 / 3}}{3} \frac{\lambda\left(\lambda+\sqrt{\lambda^{2}+8}\right)+2}{\left(\lambda+\sqrt{\lambda^{2}+8}\right)^{4 / 3}} \tag{4.31}
\end{equation*}
$$

while for the radii: $r_{s}=\left(\frac{l^{2}}{2}\right)^{1 / 3}$

$$
\begin{align*}
\frac{r_{z}^{2}}{r_{s}^{2}} & =\frac{\lambda}{2^{2 / 3}}\left(\lambda+\sqrt{\lambda^{2}+8}\right)^{1 / 3} \\
\frac{r_{\alpha}^{2}}{r_{s}^{2}} & =\frac{2^{4 / 3}}{\left(\lambda+\sqrt{\lambda^{2}+8}\right)^{2 / 3}} \tag{4.32}
\end{align*}
$$

where for $\lambda \rightarrow 1, f(\lambda) \rightarrow 1$, and $r_{z}^{2} / r_{s}^{2}=r_{\alpha}^{2} / r_{s}^{2}=1$.
From the above analysis we deduce that if the membrane length in one dimensionality (say q_{3}) is much bigger than the other two (q_{1}, q_{2}) it looses energy with respect to the symmetric case, while if it is much smaller than the other two it gains energy. The expressions of the Energy as a function of the angular momenta and tension shows the non-perturbative character of the spinning solutions. It also affords us the possibility to quantize the rotational modes of the S^{2} membrane by using L^{2} and L_{z}^{2} as Casimirs (with eigenvalues $\hbar n(n+q-2), n=0,1,2, \ldots$ for $S O(q)$ of the $S O\left(q_{1}\right), S O\left(q_{2}\right), S O\left(q_{3}\right)$ rotational groups). The classical S^{2} spinning membranes live in a 6 -dims out of the total nine while the quantum one occupies all dimensions due to the rotational wave functions $S O\left(q_{1}\right), S O\left(q_{2}\right), S O\left(q_{3}\right)$ (spherical harmonics) in $q_{1}+q_{2}+q_{3}=9$ dimensions. Concerning the stability of our solution, as we have already shown, there is classical and quantum mechanical perturbative stability for the radial modes and quadratic expansion in r_{x}, r_{y}, r_{z} around the minima will exhibit the perturbative vibrational spectrum. Stability for the multipole in θ, ϕ fluctuations exists only for the symmetric case $l_{x}=l_{y}=l_{z}$ as can be shown by using the results of [12, 22]. The geometry of the ansatz with rotating axes is that of an ellipsoid which at any time satisfies the eqs:

$$
\begin{equation*}
\frac{\vec{X}^{2}}{r_{x}^{2}}+\frac{\vec{Y}^{2}}{r_{y}^{2}}+\frac{\vec{Z}^{2}}{r_{z}^{2}}=1 . \tag{4.33}
\end{equation*}
$$

On the other hand by suitable rotations only three planes survive, i.e. (12) of the q_{1}, q_{2} and q_{3} dimensions respectively. Thus the two dimensional S^{2} surface is moving in a fixed 5-dimensional ellipsoid in the 9-dim space. We can use this observation to argue for M-theory curved gravitational backgrounds with 5 -dimensional ellipsoidal minimal submanifolds (pp waves for example). Our spinning solutions are isometrically embedable in these backgrounds, i.e. they satisfy eqs. of motion in these backgrounds.

$4.2 S^{3}$ Tops

We close this section by presenting new spinning S^{3}-brane solutions. The branes for $p=3$ attract a lot of attention due to their possible role as fundamental particles, YM-Gravity dualities [11, 11], Matrix Cosmology [6, [7], giant gravitons [1] (4) etc. Although pp-waves with fluxes present interesting backgrounds, we will hereby consider only flat LC-spacetimes in order to show that local minima of the energy can be found by appropriately balancing, generalizing spinning solutions, rotation with tension forces in this case too. The Hamiltonian for an S^{3} brane (see ch.2) in LC gauge can be written in terms of the Nambu 3-brackets

$$
\begin{equation*}
H=\frac{T_{3}}{2} \int d \Omega_{3}\left[\dot{X}^{i^{2}}+\frac{1}{3!}\left\{X^{i}, X^{j}, X^{k}\right\}^{2}\right] \tag{4.34}
\end{equation*}
$$

so that the resulting equations of motion and constraints are:

$$
\begin{align*}
\ddot{X}^{i} & =\frac{1}{2}\left\{\left\{X^{i}, X^{j}, X^{k}\right\}, X^{j}, X^{k}\right\}, \quad i, j, k=1, \ldots, d \leq D-2 \\
\left\{\dot{X}^{i}, X^{i}\right\}_{\xi_{\alpha}, \xi_{\beta}} & =0, \quad \alpha \neq \beta=\theta, \phi, \psi \tag{4.35}
\end{align*}
$$

with

$$
\begin{align*}
& d \Omega_{3}=\sin ^{2} \psi \sin \theta d \psi d \theta d \phi \\
& \left(\xi_{\alpha}\right)=(\theta, \phi, \psi), \quad 0 \leq \theta, \psi \leq \pi, 0 \leq \phi \leq 2 \pi \tag{4.36}
\end{align*}
$$

and the Nambu 3-bracket for S^{3} :

$$
\begin{equation*}
\left\{X^{i}, X^{j}, X^{k}\right\}=\frac{-1}{\sin ^{2} \psi \sin \theta} \cdot \epsilon^{\alpha \beta \gamma} \partial_{\alpha} X^{i} \partial_{\beta} X^{j} \partial_{\gamma} X^{k}, \quad \xi_{1}=\theta, \xi_{2}=\phi, \xi_{3}=\psi \tag{4.37}
\end{equation*}
$$

As we discussed in ch. 2 for S^{3} (here $p=3$) there are $p+1=4$ functions $\left(e_{1}^{2}+e_{2}^{2}+e_{3}^{2}+e_{4}^{2}=1\right)$

$$
\begin{align*}
& e_{1}=\cos \phi \sin \theta \sin \psi \\
& e_{2}=\sin \phi \sin \theta \sin \psi \\
& e_{3}=\cos \theta \sin \psi \\
& e_{4}=\cos \psi \tag{4.38}
\end{align*}
$$

closing the Nambu-bracketed (volume preserving S^{3}, Diff's) algebra, here global $S O(4)$ rotations

$$
\begin{equation*}
\left\{e_{\alpha}, e_{\beta}, e_{c}\right\}=-\epsilon_{\alpha \beta c d} e_{d}, \quad \alpha, \beta, c, d=1,2,3,4 \tag{4.39}
\end{equation*}
$$

As is the case with S^{2} this is crucial for the factorization of time and θ, ϕ, ψ dependence of the eqs. of motion. Thus with an analogous to S^{2} ansatz satisfying the constraints (4.43)

$$
\begin{align*}
& X^{i}=x^{i}(t) e_{1}, \quad i=1, \ldots, q_{1} \\
& Y^{j}=X^{j+q_{1}}=y^{j(t)} e_{2}, \quad j=1, \ldots, q_{2} \\
& Z^{k}=X^{k+q_{1}+d_{2}}=z^{k}(t) e_{3}, \quad k=1, \ldots, q_{3} \\
& W^{l}=X^{l+q_{1}+q_{2}+q_{3}}=w^{l}(t) e_{4}, \quad l=1, \ldots, q_{4} \tag{4.40}
\end{align*}
$$

with $q_{1}+q_{2}+q_{3}+q_{4}=d \leq D-2, q_{\alpha} \geq 0, \alpha=1,2,3,4$ we obtain:

$$
\begin{equation*}
\ddot{\vec{x}}=-\vec{x}\left(r_{y}^{2} r_{z}^{2}+r_{y}^{2} r_{w}^{2}+r_{z}^{2} r_{w}^{2}\right) \tag{4.41}
\end{equation*}
$$

By cyclic permutation one obtains similarly the eqs of motion for $\vec{y}, \vec{z}, \vec{w}$. where $r_{x}, r_{y}, r_{z}, r_{w}$ are the lengths of the vectors $\vec{x}, \vec{y}, \vec{z}, \vec{w}$ respectively. From 4.40 we see that the rotational symmetry $S O(d)$ is broken down to $S O\left(q_{1}\right) \times S O\left(q_{2}\right) \times S O\left(q_{3}\right) \times S O\left(q_{4}\right)$. Of course we must have $q_{\text {alpha }} \geq 2$ in order to have at least $S O(2)$ rotational symmetry. Otherwise (i.e. if some $q_{\alpha}=1$) we have less rotational symmetry. The Energy-Angular momenta of the ansatz are:

$$
\begin{align*}
E= & \frac{T_{3}}{2} \frac{\operatorname{Vol}\left(S^{3}\right)}{4}\left[\dot{r}_{x}^{2}+\dot{r}_{y}^{2}+\dot{r}_{z}^{2}+\dot{r}_{w}^{2}+\frac{l_{x}^{2}}{r_{x}^{2}}+\frac{l_{y}^{2}}{r_{y}^{2}}+\frac{l_{z}^{2}}{r_{z}^{2}}+\frac{l_{w}^{2}}{r_{w}^{2}}\right. \\
& \left.+r_{x}^{2} r_{y}^{2} r_{z}^{2}+r_{x}^{2} r_{y}^{2} r_{w}^{2}+r_{y}^{2} r_{z}^{2} r_{w}^{2}+r_{x}^{2} r_{z}^{2} r_{w}^{2}\right] \tag{4.42}
\end{align*}
$$

where $\operatorname{Vol}\left(S^{3}\right)=2 \pi^{2}$ and the angular momenta are

$$
\begin{equation*}
L_{i}^{2}=\left(\frac{T_{3} \pi^{2}}{2 \cdot 2}\right)^{2} l_{i}^{2}, \quad i=x, y, z, w \tag{4.43}
\end{equation*}
$$

and

$$
\begin{equation*}
l_{x}^{2}=\sum_{i \neq j=1}^{q_{1}}\left(\dot{x_{i}} x_{j}-\dot{x_{j}} x_{i}\right)^{2} \tag{4.44}
\end{equation*}
$$

Similarly for l_{y}, l_{y}, l_{z}. If all $l_{x, y, z, w}^{2}$ are different from zero the minimization condition for the $V_{\text {eff }}$ is equivalent to constant radii solutions

$$
\begin{equation*}
l_{x}^{2}=r_{x}^{4}\left(r_{y}^{2} r_{z}^{2}+r_{y}^{2} r_{w}^{2}+r_{z}^{2} r_{w}^{2}\right) \tag{4.45}
\end{equation*}
$$

Indeed, we can check that these are local minima ($\left.\frac{\partial^{2} V}{\partial r_{\alpha} \partial r_{\beta}}\right|_{\text {minima }}$ is positive definite). With analogous arguments with the S^{2} case the minimization condition can be solved due to permutation symmetry $(x \rightarrow y \rightarrow z \rightarrow w)$ with in general fourth order polynomial equations. Here we exhibit the two simplest cases: (a) symmetric, $r_{x}=r_{y}=r_{z}=r_{w}=R$, $l_{x}=l_{y}=l_{z}=l_{w}=l$, and (b) axially symmetric $r_{x}=r_{y}=r_{z}=R, r_{w}=R_{w}$, and $l_{x}=l_{y}=l_{z}=l, l_{w}$. For the symmetric case we get:

$$
\begin{align*}
& R_{\mathrm{sym}}^{2}=\left(\frac{l^{2}}{3}\right)^{1 / 4} \tag{4.46}\\
& E_{\mathrm{sym}}=2 T_{3} \operatorname{Vol}\left(S^{3}\right)\left(\frac{l^{2}}{3}\right)^{3 / 4} \tag{4.47}
\end{align*}
$$

For the axisymmetric case the radii are:

$$
\begin{align*}
& R^{2}=\left(\frac{l_{w}^{2}}{3}\right)^{1 / 4}\left[\sqrt{1+3 \frac{l^{2}}{l_{w}^{2}}}-1\right]^{1 / 2} \\
& R_{w}^{2}=\frac{\left(l_{w}^{2} / 3\right)^{1 / 4}}{\left[\sqrt{1+3 l^{2} / l_{w}^{2}}-1\right]^{1 / 2}} \tag{4.48}
\end{align*}
$$

and the energy

$$
\begin{equation*}
E_{a x}=\frac{T_{3} \operatorname{Vol}\left(S^{3}\right)}{2}\left(\frac{l_{w}^{2}}{3}\right)^{3 / 4}\left[2+\sqrt{1+3 \frac{l^{2}}{l_{w}^{2}}}\right]\left[\sqrt{1+3 \frac{l^{2}}{l_{w}^{2}}}-1\right]^{1 / 2} \tag{4.49}
\end{equation*}
$$

By rescaling $l_{w}^{2}=\lambda l^{2}$ we find

$$
\begin{equation*}
\frac{E_{a x}}{E_{\text {sym }}}=\frac{\lambda^{3 / 4}}{4}\left(2+\sqrt{1+\frac{3}{\lambda}}\right)\left(-1+\sqrt{1+\frac{3}{\lambda}}\right)^{1 / 2} \tag{4.50}
\end{equation*}
$$

also

$$
\begin{equation*}
\frac{R_{w}^{2}}{R^{2}}=\frac{1}{\sqrt{1+\frac{3}{\lambda}}-1} \tag{4.51}
\end{equation*}
$$

For $\lambda=1$ we have the symmetric case. For $\lambda \rightarrow 0$, we find qualitatively similar results with S^{2} : For $\lambda \rightarrow \infty$ we find

$$
\begin{align*}
& \frac{E_{a x}}{E_{s}} \xrightarrow{\lambda \rightarrow 0} \frac{3^{3 / 4}}{4}<1 \\
& \frac{E_{a x}}{E_{s}} \xrightarrow{\lambda \rightarrow \infty} \lambda^{1 / 4} \frac{3}{2^{2}}\left(\frac{3}{2}\right)^{1 / 2}>1 \tag{4.52}
\end{align*}
$$

As far as the time dependence is concerned we can choose without loss of generality 4planes $x^{1} x^{2}, y^{1} y^{2}, z^{1} z^{2}, w^{1} w^{2}$ where the initial position and velocity vectors belong. Then the ansatz (4.47) of constant radii (at the minima) $r_{x}=R_{x}, r_{y}=R_{y}, r_{z}=R_{z}, r_{w}=R_{z}$

$$
\begin{equation*}
\dot{\vec{x}}(t)=e^{\Omega_{x} t} \vec{x}(0) \tag{4.53}
\end{equation*}
$$

Similarly for $\dot{\vec{y}}, \dot{\vec{z}}, \dot{\vec{w}}$.
With $\Omega_{i}=\left(\begin{array}{cc}0 & -w_{i} \\ w_{i} & 0\end{array}\right), i=x, y, z, w$ and the balancing of force conditions give (see ch.3) $v=\Omega_{x}^{2} \oplus \Omega_{y}^{2} \oplus \Omega_{z}^{2} \oplus \Omega_{w}^{2}$ with

$$
\begin{equation*}
\omega_{x}^{2}=R_{x}^{2} R_{y}^{2}+R_{z}^{2} R_{w}^{2}+R_{y}^{2} R_{w}^{2} \tag{4.54}
\end{equation*}
$$

By cyclic permutation of the indices one obtains the other components as well.
These relations are identical to the minimization conditions (4.45) since $l_{i}=\omega_{i} R_{i}^{2}, i=$ x, y, z, w. As a result given the constants of motion $l_{x}, l_{y}, l_{z}, l_{w}$, the R's are determined. The stability of the spinnining S^{3}-brane solutions has been shown only for the radial modes.

For the symmetric case, (all l's, R's are equal), we conjecture that we have full stability i.e. by including perturbations of general S^{3} multipole-vibrational modes.

It is possible to choose the dimension of the ansatz $d=q_{1}+q_{2}+q_{3}+q_{4}<D-2, D$ the $p=3$ critical dimension, i.e. $D=6,8$ and for the rest $D-2-d$ we select constant values for the coordinates $X^{i}, i=D-2-d, D-1-d, \ldots, D-2$. If $D-2-d=3$ our physical space, then we have S^{3}-particles with Kaluza-Klein charges- (internal angular momenta, as is also the case with S^{2}). The QM of the rotational modes plus quadratic vibrational ones can be carried out by using only algebraic functions of $S O\left(q_{i}\right)$ Casimirs.

5. Toroidal p-brane Tops $\left(T^{2}, T^{3}\right)$ on $C^{k} \times T^{m}$

$5.1 T^{2}$ spinning Tops

In this section we propose some new spinning toroidal p-brane solutions with some of the higher dimensions compactified in Toroidal spaces. Double dimensional reduction of the $p=2$ Toroidal Supermembrane leads to type IIA string theory. With the addition of an S^{1} compactification followed by T-duality a connection is made with Type IIB string Theory . In order to proceed we choose $d<D-2$ dimensions to be an even number $d=2 k$. We collect the coordinates $X^{1}, X^{2}, \ldots, X^{2 k-1}, X^{2 k}$ into complex pairs,

$$
\begin{equation*}
Z^{i}=X^{2 i-1}+i X^{2 i}, \quad i=1, \ldots, d / 2 \tag{5.1}
\end{equation*}
$$

We identify the rest ones $D-2-d=m$ as Y^{a} with $a=1, \ldots, m$. The Hamiltonian can be identified from ch. 2 to be

$$
\begin{equation*}
H=\frac{T_{p}}{2} \int d^{p} \xi\left[\dot{X}^{i^{2}}+\operatorname{det} g_{\alpha \beta}\right] \tag{5.2}
\end{equation*}
$$

where $g_{\alpha \beta}=\partial_{\alpha} X^{i} \partial_{\beta} X^{i},(\alpha, \beta=1, \ldots, p)$ is the induced metric. The connection with the Nambu Poisson bracket is established through the identity:

$$
\begin{equation*}
\operatorname{det}_{\alpha \beta}=\frac{1}{p!} \epsilon_{\alpha_{1} \cdots \alpha_{p}} \epsilon_{\beta_{1} \cdots \beta_{p}} g_{\alpha_{1}, \beta_{1}} \cdots g_{\alpha_{p}, \beta_{p}}, \alpha_{1}\left(\beta_{1}\right), \ldots, \alpha_{p}\left(\beta_{p}\right)=1, \ldots, p \tag{5.3}
\end{equation*}
$$

for the case $p=2$ by taking into account the pairing eq.(5.1) we find

$$
\begin{equation*}
g_{\alpha \beta}=\frac{1}{2}\left(\partial_{\alpha} Z^{i} \partial_{\beta} \bar{Z}^{i}+\partial_{\alpha} \bar{Z}^{i} \partial_{\beta} Z^{i}\right)+\partial_{\alpha} Y^{a} \partial_{\beta} Y^{a}, \quad i=1, \ldots, k \quad a=1, \ldots, m \tag{5.4}
\end{equation*}
$$

By applying rel.(5.3) to the case of $p=2$ Torus T^{2} the Hamiltonian becomes

$$
\begin{align*}
H= & \frac{T_{p}}{2} \int d^{2} \sigma\left[\left|\dot{Z}^{i}\right|^{2}+\left|\dot{Y}^{a}\right|^{2}+\frac{1}{4}\left|\left\{Z^{i}, Z^{j}\right\}\right|^{2}+\frac{1}{4}\left|\left\{Z^{i}, \bar{Z}^{j}\right\}\right|^{2}+\right. \\
& \left.\left|\left\{Z^{i}, Y^{a}\right\}\right|^{2}+\frac{1}{2}\left|\left\{Y^{a}, Y^{b}\right\}\right|^{2}\right] \tag{5.5}\\
i, j= & 1, \ldots, k \quad a, b=1, \ldots, m \quad \vec{\sigma}=\left(\sigma_{1}, \sigma_{2}\right) \in(0,2 \pi)^{2}
\end{align*}
$$

The constraints become:

$$
\begin{equation*}
\left\{\dot{Z}^{i}, \bar{Z}^{i}\right\}+c . c .+\left\{\dot{Y}^{a}, Y^{a}\right\}=0 \tag{5.6}
\end{equation*}
$$

The eqs of motion for the Hamiltonian (5.5) are:

$$
\begin{align*}
\ddot{Z}^{i} & =\frac{1}{2}\left\{\left\{Z^{i}, Z^{j}\right\}, \bar{Z}^{j}\right\}+\frac{1}{2}\left\{\left\{Z^{i}, \bar{Z}^{j}\right\}, Z^{j}\right\}+\frac{1}{2}\left\{\left\{Z^{i}, Y^{a}\right\}, Y^{a}\right\} \\
\ddot{Y}^{a} & =\frac{1}{2}\left\{\left\{Y^{a}, Z^{i}\right\}, \bar{Z}^{i}\right\}+\frac{1}{2}\left\{\left\{Y^{a}, \bar{Z}^{i}\right\}, Z^{i}\right\}+\frac{1}{2}\left\{\left\{Y^{a}, Y^{b}\right\}, Y^{b}\right\} \tag{5.7}\\
i, j & =1, \ldots, k \quad a, b=1, \ldots, m
\end{align*}
$$

Before we proceed with the factorization ansatz let us demonstrate that the Hamiltonian (5.5) along with the eqs.(5.7) with a suitable dimensional reduction (double or multiple) describe LC gauge fixed closed string theory (the Bosonic part). Choose all the Y^{a} compactified on a torus $T^{m}, a=1, \ldots, m$ with radii R_{a}.

$$
\begin{equation*}
Y^{a}=R_{a} \cdot \vec{m}_{a} \cdot \vec{\xi}+\frac{2 \pi k^{a}}{R_{a}} \cdot t \tag{5.8}
\end{equation*}
$$

$\vec{m}_{a}=\left(m_{a}^{1}, m_{a}^{2}\right) \in Z^{2}$ the windings and k^{a} the KK integer momenta. We also assume that all the $Z^{i}, i=1, \ldots, k$ depend only on ξ_{1}. For the reduced Hamiltonian we get

$$
\begin{equation*}
H_{\mathrm{red}}=\pi T_{2} \int d \xi_{1}\left[\left|\dot{Z}^{i}\right|^{2}+k\left|\partial_{\sigma_{1}} Z^{j}\right|^{2}\right] \tag{5.9}
\end{equation*}
$$

with $k=\sum_{a} R_{a}^{2}\left(m_{a}^{1}\right)^{2}$. By rescaling the time $t=\frac{1}{\sqrt{k}} \tau$ and by calling $\xi_{1}=\xi$ we obtain

$$
\begin{equation*}
H_{\text {string }}=\frac{T_{1}}{2} \int_{0}^{2 \pi} d \xi_{1}\left[\left|\partial_{\tau} Z^{i}\right|^{2}+\left|\partial_{\xi} Z^{i}\right|^{2}\right] \tag{5.10}
\end{equation*}
$$

where $T_{1}=2 \pi k T_{2}$. We will consider special embeddings of the T^{2} in $C^{k} \times T^{m}$, toroidally compactified.

$$
\begin{align*}
Z^{i} & =\zeta^{i}(t) e^{i \vec{n}_{i} \cdot \vec{\xi}}, \quad i=1, \ldots, k \\
Y^{a} & =R_{a} \cdot \vec{m}_{a} \cdot \vec{\xi}+\frac{2 \pi k^{a}}{R_{a}} \cdot t, \quad a=1, \ldots, m \tag{5.11}
\end{align*}
$$

R_{a} are the radii of T^{m} and $\vec{m}_{a}=\left(m_{a}^{1}, m_{a}^{2}\right) \in Z^{2}$ are the winding numbers and k^{a} the KK momenta. It is trivial to see that the eqs. of motion for Y^{a} as well as the constraints are automatically satisfied. As for the Hamiltonian we find

$$
\begin{equation*}
H=2 \pi^{2} T_{2}\left[\sum_{i}\left(\left|\dot{\zeta}^{i}\right|^{2}+k_{i}\left|\zeta^{i}\right|^{2}\right)+\frac{1}{2} \sum_{i, j} \nu_{i j}\left|\zeta^{i}\right|^{2}\left|\zeta^{j}\right|^{2}\right], \quad i=1, \ldots, k \tag{5.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\nu_{i j}=\left(\vec{n}_{i} \times \vec{n}_{j}\right)^{2}, \quad k_{i}=\sum_{a} R_{a}^{2}\left(\vec{m}_{a} \times \vec{n}_{i}\right)^{2} \tag{5.13}
\end{equation*}
$$

and $(\vec{n} \times \vec{m})=n_{1} m_{2}-n_{2} m_{1}$. The eqs. of motion for the ζ^{i} are:

$$
\begin{equation*}
\ddot{\zeta}^{i}=-\zeta^{i}\left(k_{i}+\sum_{j} \nu_{i j}\left|\zeta_{j}\right|^{2}\right), \quad i=1, \ldots, k \tag{5.14}
\end{equation*}
$$

We observe that if the range of $i-1, \ldots, k$ is partitioned into say three groups q_{1}, q_{2}, q_{3} of non-negative integers, with $q_{1}+q_{2}+q_{3}=k$ and moreover q_{1} of \vec{n}_{i} s are equal, say \vec{n}_{1}, q_{2} are equal, say \vec{n}_{2} and the same for q_{3}, \vec{n}_{3} the matrix $k \times k \nu_{i j}$ has a special structure and there exist only three matrix elements which we call $\nu_{12}=\left(\vec{n}_{1} \times \vec{n}_{2}\right)^{2}, \nu_{23}=\left(\vec{n}_{2} \times \vec{n}_{3}\right)^{2}$ as well as $\nu_{31}=\left(\vec{n}_{3} \times \vec{n}_{1}\right)^{2}$. Furthermore we call $\vec{w}_{1}=\left(\zeta^{1}, \zeta^{2}, \ldots, \zeta^{q_{1}}\right), \vec{w}_{2}=\left(\zeta^{q_{1}+1}, \ldots, \zeta^{q_{1}+q_{2}}\right)$, $\vec{w}_{3}=\left(\zeta^{q_{1}+q_{2}+1}, \ldots, \zeta^{k}\right)$ the three $q_{1}, q_{2} \cdot q_{3}$ dimensional complex vectors. Then the eqs. of motion become

$$
\begin{align*}
\ddot{\vec{w}}_{1} & =-\vec{w}_{1}\left(k_{1}+\nu_{12}\left|w_{2}\right|^{2}+\nu_{13}\left|w_{3}\right|^{2}\right) \\
k_{i} & =\sum_{a=1}^{m} R_{\alpha}^{2}\left(\vec{m}_{\alpha} \times \vec{n}_{i}\right)^{2}, \quad i=1,1,2,3 \tag{5.15}
\end{align*}
$$

Similarly for w_{2}, w_{3}. With

$$
\begin{equation*}
\left|\vec{w}_{1}\right|^{2}=\sum_{i=1}^{q_{1}}\left|\zeta^{i}\right|^{2}, \quad\left|\vec{w}_{2}\right|^{2}=\sum_{i=q_{1}+1}^{q_{1}+q_{2}}\left|\zeta^{i}\right|^{2}, \quad\left|\vec{w}_{3}\right|^{2}=\sum_{i=q_{1}+q_{2}+1}^{q_{1}+q_{2}+q_{3}}\left|\zeta^{i}\right|^{2} \tag{5.16}
\end{equation*}
$$

The Hamiltonian (5.12) now becomes

$$
\begin{equation*}
H=2 \pi T_{2}\left[\sum_{i=1}^{3}\left|\dot{\vec{w}_{i}}\right|^{2}+k_{i}\left|\vec{w}_{i}\right|^{2}+\nu_{12}\left|\vec{w}_{1}\right|^{2}\left|\vec{w}_{2}\right|^{2}+\nu_{23}\left|\vec{w}_{2}\right|^{2}\left|\vec{w}_{3}\right|^{2}+\nu_{13}\left|\vec{w}_{1}\right|^{2}\left|\vec{w}_{3}\right|^{2}\right] \tag{5.17}
\end{equation*}
$$

We observe that the initial $S O(2 k)$ space-rotational invariance of the system is broken down to $U\left(q_{1}\right) \times U\left(q_{2}\right) \times U\left(q_{3}\right)$ symmetry. Note also that because of the cross product term $\nu_{i j}$ there is a modular invariance $S L(2, Z)$ which preserves $\nu_{i j}$. The new terms $k_{i}\left|w_{i}\right|^{2}$ are harmonic terms which are induced by the interactions of the windings \vec{m}_{α} with the $e^{i \vec{n}_{i} \cdot \vec{\sigma}}$ dependence of the ansatz.

The conserved "complex" angular momenta for every factor of $U\left(q_{1}\right) \times U\left(q_{2}\right) \times U\left(q_{3}\right)$, call it generically $U(n)$, are determined from the Hamiltonian (5.12) and Noether's theorem. The generators of $\mathrm{U}(\mathrm{n})$ are $n \times n$ hermitian matrices of three types. Firstly $\frac{n(n-1)}{2} T^{2(i j)}$ Hermitian matrices with elements -i and i in entries (ij) and (ji) respectively with zero everywhere else. Secondly there exist $\frac{n(n-1)}{2} T^{1(i j)}$ Hermitian matrices with 1 in both (ij) and (ji) positions with zero everywhere else and lastly $n T^{3(i i)}$ with element 1 in positions (ii) and zero otherwise. For these three generators we find the conserved angular momenta

$$
\begin{align*}
& T_{1}^{(i j)}=\frac{1}{2}\left(z^{i} \dot{z}^{j}+\bar{z}^{i} \dot{z}^{j}\right)-\frac{1}{2}\left(z^{j} \dot{\bar{z}}^{i}+\bar{z}^{j} \dot{z}^{i}\right), \quad i>j=1, \ldots, n \\
& T_{2}^{(i j)}=\frac{-i}{2}\left(z^{i} \dot{\bar{z}}^{j}-\bar{z}^{i} \dot{z}^{j}\right)-\frac{i}{2}\left(z^{j} \dot{\bar{z}}^{i}-\bar{z}^{j} \dot{z}^{i}\right), \quad i>j=1, \ldots, n \\
& T_{3}^{(i i)}=\frac{-i}{2}\left(z^{i} \dot{\bar{z}}^{i}-\bar{z}^{i} \dot{z}^{i}\right), \quad i=1, \ldots, n \tag{5.18}
\end{align*}
$$

These are real conserved quantities which can be grouped into one complex and one real as follows:

$$
\begin{align*}
& T^{(i j)}=T_{1}^{(i j)}+T_{2}^{(i j)}=z^{i} \dot{\bar{z}}^{j}-\bar{z}^{j} \dot{z}^{i}, \quad i>j=1, \ldots, n \\
& T_{3}^{(i i)}=-\frac{i}{2} T^{(i i)} \tag{5.19}
\end{align*}
$$

By using some familiar identites we demonstrate that the Casimir element

$$
\begin{equation*}
\sum_{i>j}\left[\left(T_{1}^{(i j)}\right)^{2}+\left(T_{2}^{(i j)}\right)^{2}\right]+\sum_{i}\left(T_{3}^{(i i)}\right)^{2} \equiv \vec{T}^{2} \tag{5.20}
\end{equation*}
$$

is related to the generic kinetic term

$$
\begin{equation*}
|\dot{\vec{z}}|^{2}=\left|\dot{z}_{1}\right|^{2}+\cdots+\left|\dot{z}_{n}\right|^{2}=\frac{\vec{T}^{2}}{r^{2}}+\dot{r}^{2} \tag{5.21}
\end{equation*}
$$

where $r^{2}=\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}$ So if we call the lengths of the complex vectors $\left|\vec{w}^{i}\right|=r_{i}, i=$ $1,2,3$ and the Casimirs of each factor $U\left(q_{i}\right) T_{i}^{2}=\vec{T}_{i}^{2}, i=1,2,3$ the Hamiltonian can be written as

$$
\begin{equation*}
H=2 \pi^{2} T_{2}\left[\sum_{i=1}^{3}\left(\dot{r}_{i}^{2}+\frac{T_{i}^{2}}{r_{i}^{2}}\right)+\sum_{i=1}^{3} k_{i} r_{i}^{2}+\nu_{3} r_{1}^{2} r_{2}^{2}+\nu_{2} r_{1}^{2} r_{3}^{2}+\nu_{1} r_{2}^{2} r_{3}^{2}\right] \tag{5.22}
\end{equation*}
$$

with $\nu_{1}=\nu_{23}, \nu_{2}=\nu_{3}, \nu_{3}=\nu_{12}$.
In order to obtain the Euler-Top solutions we proceed as with the spherical cases $\left(S^{2}, S^{3}\right)$ of ch.4. The energy minimization conditions for constant radii $r_{i}, i=1,2,3$ are as follows:

$$
\begin{equation*}
T_{1}^{2}=r_{1}^{4}\left(k_{1}+\nu_{3} r_{2}^{2}+\nu_{2} r_{3}^{2}\right) \tag{5.23}
\end{equation*}
$$

Similarly for the other components.
We observe that the permutation symmetry $r_{1} \leftrightarrow r_{2} \leftrightarrow r_{3}$ is broken unless we have the special point $k_{1}=k_{2}=k_{3}=k, \nu_{1}=\nu_{2}=\nu_{3}=\nu$. If we choose $\vec{n}_{1}+\vec{n}_{2}+\vec{n}_{3}=0$ (special embeddings) then we guarrantee that $\nu_{1}=\nu_{2}=\nu_{3}=\nu$. We proceed to solve (5.23) for the special point

$$
\begin{equation*}
T_{1}^{2}=r_{1}^{4}\left(k+\nu\left(r_{2}^{2}+r_{3}^{2}\right)\right) \tag{5.24}
\end{equation*}
$$

Similarly for the other components. We observe that the difference with the previous S^{2} case lies in the harmonic term k . For the completely symmetric case (symmetric toroidal 2-brane Top) $T_{1}^{2}=T_{2}^{2}=T_{3}^{2}=T_{s}^{2}$ and $r_{1}^{2}=r_{1}^{2}=r_{1}^{2}=r_{s}^{2}$ we find

$$
\begin{equation*}
T_{s}^{2}=r_{s}^{4}\left(k+2 \nu r_{s}^{2}\right) \tag{5.25}
\end{equation*}
$$

while for the axially symmetric case $r_{1}=r_{2}=r, T_{1}=T_{2}=T$ we obtain

$$
\begin{align*}
& T^{2}=r^{4}\left(k+\nu\left(r^{2}+r_{3}^{2}\right)\right) \\
& T_{3}^{2}=r_{3}^{4}\left(k+2 \nu r_{3} r^{2}\right) \tag{5.26}
\end{align*}
$$

For the symmetric case it is possible to get an analytic expression for the solution which follows from the careful analysis of the cubic equation (5.25). We define two ratios

$$
\begin{equation*}
\rho_{k}=\left(\frac{k}{6 \nu}\right)^{3}, \rho_{T}=\frac{T^{2}}{4 \nu} . \tag{5.27}
\end{equation*}
$$

For $\rho_{T}>2 \rho_{k}$ the equilibrium value of the radius of the torus which corresponds to the balancing out of the attractive tension against the repulsive algular kinetic energy is found to be

$$
\begin{equation*}
r_{s}^{2}=\left[\rho_{T}-\rho_{k}+\sqrt{\rho_{T}\left(\rho_{T}-2 \rho_{k}\right)}\right]^{1 / 3}+\left[\rho_{T}-\rho_{k}-\sqrt{\rho_{T}\left(\rho_{T}-2 \rho_{k}\right)}\right]^{1 / 3}-\rho_{k}^{1 / 3} \tag{5.28}
\end{equation*}
$$

while for $\rho_{T}<2 \rho_{k}$ combimations with the third root of unity $e^{2 \pi i / 3}$ give the result. the eq. (5.25) has always one largest positive root. The energy of the solution is

$$
\begin{equation*}
E_{s}=8 \pi^{2} T_{2} \nu\left(r_{s}^{4}+4 \rho_{k}^{1 / 3} r_{s}^{2}\right) \tag{5.29}
\end{equation*}
$$

For large angular momenta $\rho_{T} \gg \rho_{k}, \rho_{T} \rightarrow \infty$ the radius r_{s}^{2} behaves like

$$
\begin{equation*}
r_{s}^{2} \sim\left(\frac{T^{2}}{4 \nu}\right)^{1 / 3} \tag{5.30}
\end{equation*}
$$

while the energy scales like

$$
\begin{equation*}
E_{s} \sim(\nu T)^{4 / 3} \tag{5.31}
\end{equation*}
$$

We have an identical power law behaviour with the S^{2} case (apart from the factor $\nu=$ $\left(\vec{n}_{1} \times \vec{n}_{2}\right)^{2}$ see rel.(5.13). The axially symmetric case (5.26) is algebraically not tractable apart from some special points in the space of parameters ν, k, T^{2}, T^{3}. We now proceed to discuss the time dependence of the complex vectors $\vec{w}_{i}, i=1,2,3$.

$$
\begin{equation*}
\vec{w}_{i}=e^{i \Omega_{i} t} \vec{w}_{i}(t=0) \tag{5.32}
\end{equation*}
$$

In general Ω_{i} is a linear combination of the T_{1}, T_{2}, T_{3} hermitian matrices discussed previously. By using $U_{q_{i}}$ transformations we can bring $\vec{w}_{i}(t=0), \dot{\vec{w}}_{i}(t=0)$ in the $\left(z_{1}, z_{2}\right)$ complex plane and the Ω_{i} have the form of an $S U(2)$ hermitian matrix. In the simplest case of a diagonal $\mathrm{U}(1)$ matrices we get angular velocities ω_{i} which satisfy the (5.15) eqs. of motion

$$
\begin{equation*}
\omega_{1}^{2}=k_{1}+v_{3} r_{2}^{2}+v_{2} r_{3}^{2} \tag{5.33}
\end{equation*}
$$

Similarly for ω_{2}, ω_{3}. We can check from (5.21)

$$
\begin{equation*}
T_{i}^{2}=\omega_{i}^{2} \cdot r_{i}^{4}, i=1,2,3 \tag{5.34}
\end{equation*}
$$

and so the minimization conditions are identical with the eqs. of motion (5.15).

5.2 The three dimensional spinning torus T^{3}

Our last but not least example of spinning p-brane is the spinning T^{3} torus $(p=3)$. The example is the richest one which exhibits unitary group symmetries $\prod_{i=1}^{4} U\left(q_{i}\right)$ as well as a larger modular group symmetry $S L(3, Z)$. Moreover, it leads to the $p=2$ (membrane) case by double dimensional reduction. This is an extension of the reduction of the membrane $(p=2)$ to the string case $(p=1)$.

We start again from the basic Hamiltonian

$$
\begin{equation*}
H=\frac{T_{p}}{2} \int d^{3} \xi\left[\dot{X}^{i^{2}}+\operatorname{det}\left(\partial_{\alpha} X^{i} \partial_{\beta} X^{i}\right)\right] \tag{5.35}
\end{equation*}
$$

and the constraints

$$
\begin{equation*}
\left\{\dot{X}^{i}, X^{i}\right\}_{\alpha, \beta}=0 \alpha \neq \beta=1,2,3, i=1, \ldots, D-2 \tag{5.36}
\end{equation*}
$$

The volume preserving diffeomorphisms contain also global translations $P_{\alpha}, \alpha=1,2,3$ along cycles at T^{3} which are not connected to the identity. The connected subgroup is generated polynomially by the Nambu-Bracket algebra.

$$
\begin{equation*}
\left\{e_{\vec{n}_{1}}, e_{\vec{n}_{2}}, e_{\vec{n}_{3}}\right\}=i^{3} \operatorname{det}\left[\vec{n}_{1}, \vec{n}_{2}, \vec{n}_{3}\right] \cdot e_{\vec{n}_{1}+\vec{n}_{2}+\vec{n}_{3}} \tag{5.37}
\end{equation*}
$$

where the basic functions $e_{\vec{n}}$ are:

$$
\begin{equation*}
e_{\vec{n}}=e^{i \vec{n} \cdot \vec{\xi}}, \quad \vec{\xi} \in[0,2 \pi]^{3}, \quad \vec{n}=\left(n^{1}, n^{2}, n^{3}\right) \in Z^{3} \tag{5.38}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}\left[\vec{n}_{1}, \vec{n}_{2}, \vec{n}_{3}\right]=\epsilon_{\alpha \beta \gamma} n_{1}^{\alpha} n_{2}^{\beta} n_{3}^{\gamma} \tag{5.39}
\end{equation*}
$$

The automorphism group of (5.37) contains the $\mathrm{SL}(3, \mathrm{Z})$ modular group which leaves the structutre constants invariant $\vec{n} \rightarrow A \vec{n}, A \in \mathrm{SL}(3, \mathrm{Z}), A=\left(A_{i j}\right)$ integer matrix with $\operatorname{det} A=1$

In order to proceed with our ansatz we separate the D-2 target coordinates $X^{i}, i=$ $1, \ldots, D-2$ into two groups. Firstly we pair $X^{1}, X^{2}, \ldots, X^{2 k}$ into complex ones $2 k<D-2$

$$
\begin{equation*}
Z^{l}=X^{2 l-1}+i X^{2 l}, \quad l=1, \ldots, k \tag{5.40}
\end{equation*}
$$

and the rest $D-2-2 k \equiv m, Y^{\alpha}, \alpha=1, \ldots, m$. The determinant $\operatorname{detg}_{\alpha \beta}$ of the induced metric:
$g_{\alpha \beta}=\frac{1}{2} \partial_{\alpha} Z^{l} \partial_{\beta} \bar{Z}^{l}+\frac{1}{2} \partial_{\alpha} \bar{Z}^{l} \partial_{\beta} Z^{l}+\partial_{\alpha} Y^{a} \partial_{\beta} Y^{a}, \quad l=1, \ldots, k, \quad a=1, \ldots, m \quad \alpha, \beta=1,2,3$
can be calculated. We derive the Hamiltonian in terms of Z^{l}, Y^{a} s:

$$
\begin{align*}
H= & \frac{T_{3}}{2} \int d^{3} \xi\left(\left|\dot{Z}^{i}\right|^{2}+\left|\dot{Y}^{a}\right|^{2}+\frac{1}{24}\left|\left\{Z^{i}, Z^{j}, Z^{k}\right\}\right|^{2}+\right. \\
& \frac{1}{8}\left|\left\{Z^{i}, Z^{j}, \bar{Z}^{k}\right\}\right|^{2}+\frac{1}{4}\left|\left\{Z^{i}, Z^{j}, Y^{a}\right\}\right|^{2}+\frac{1}{4}\left|\left\{Z^{i}, \bar{Z}^{j}, Y^{a}\right\}\right|^{2}+ \\
& \left.\frac{1}{2}\left|\left\{Z^{i}, Y^{a}, Y^{b}\right\}\right|^{2}+\frac{1}{3!}\left|\left\{Y^{a}, Y^{b}, Y^{c}\right\}\right|^{2}\right) \tag{5.42}
\end{align*}
$$

with $a, b, c=1, \ldots, m$ and the constraints:

$$
\begin{equation*}
\left\{\dot{Z}^{i}, \bar{Z}^{i}\right\}+c \cdot c+\left\{\dot{Y}^{a}, Y^{a}\right\}_{a, b}=0, \quad a, b=1,2,3 \tag{5.43}
\end{equation*}
$$

We notice here that upon double dimensional reduction that is by compactificationon a circle and by assuming that $Z^{i}, \quad i=1, \ldots, k$ depend only on ξ^{1}, ξ^{2} and not on ξ^{3}, we can get from the Hamiltonian of $p=3(5.42)$ toroidal of branes the $p=2$ ones. Indeed the above asumption leads to (constant terms are neglected):

$$
\begin{align*}
& H=\frac{T_{3}}{2} 2 \pi \int d^{2} \xi\left[\left|\dot{Z}^{i}\right|^{2}+\frac{1}{4} \nu\left(\left|\left\{Z^{i}, Z^{j}\right\}\right|^{2}+\left|\left\{Z^{i}, \bar{Z}^{j}\right\}\right|^{2}\right)+\frac{1}{2}\left|L_{a, b} Z^{i}\right|^{2}\right], \\
& \quad i, j=1, \ldots, k \quad a, b=1, \ldots, m \tag{5.44}
\end{align*}
$$

with

$$
\begin{align*}
L_{a, b} & =R^{a} R^{b}\left[\left(m_{2}^{a} m_{3}^{b}-m_{3}^{a} m_{2}^{b}\right) \partial_{1}+\left(m_{3}^{a} m_{1}^{b}-m_{1}^{a} m_{3}^{b}\right) \partial_{2}\right] \\
\nu & =\sum_{a}\left(R^{a} m_{3}^{a}\right)^{2}, \quad a, b=1, \ldots, m \tag{5.45}
\end{align*}
$$

With appropriate diagonalization and rescaling of the operator $L_{a, b}$ we can arrive at normal form of the harmonic term $\left|L_{a, b} \tau^{i}\right|^{2}$ and derive eqs. of motion for T^{2}. The compactified target coordinates induce, constant, harmonic and unharmonic terms respectively on the Hamiltonian. The constant term corresponds to the KK kinetic energy as well as the winding energy $\sum_{a, b, c}\left(R^{a} R^{b} R^{c}\right)^{2} \operatorname{det}^{2}\left(\vec{m}^{a} \vec{m}^{b} \vec{m}^{c}\right)$. The reduced Hamiltonian without the constant term is as follows (summation over the indices is implied):

$$
\begin{align*}
H= & \frac{T_{3}}{2}(2 \pi)^{3}\left[\left|\dot{\zeta}^{i}\right|^{2}+\frac{1}{6} \operatorname{det}^{2}\left(\vec{n}_{i} \vec{n}_{j} \vec{n}_{k}\right)\left|\zeta^{i}\right|^{2}\left|\zeta^{j}\right|^{2}\left|\zeta^{k}\right|^{2}\right. \\
& \left.+\frac{1}{2}\left|\zeta^{i}\right|^{2}\left|\zeta^{j}\right|^{2} R^{a^{2}} \operatorname{det}^{2}\left(\vec{n}_{i}, \vec{n}_{j}, \vec{m}^{a}\right)+\frac{1}{2}\left|\zeta^{i}\right|^{2} R^{a^{2}} R^{b^{2}} \operatorname{det}^{2}\left(\vec{n}_{i}, \vec{m}^{a}, \vec{m}^{b}\right)\right] \tag{5.46}
\end{align*}
$$

and the ζ^{i} complex scale factors satisfy the eqs.:

$$
\begin{equation*}
\ddot{\zeta}^{i}=-\frac{1}{2} \zeta^{i}\left[\sum_{i, l \neq i}\left|\zeta^{j}\right|^{2}\left|\zeta^{k}\right|^{2} \lambda_{i j k}+2 \sum_{j \neq i}\left|\zeta^{j}\right|^{2} \nu_{i j}+\dot{k}_{i}\right] \tag{5.47}
\end{equation*}
$$

with

$$
\begin{align*}
\lambda_{i j l} & =\operatorname{det}^{2}\left(\vec{n}_{i}, \vec{n}_{j}, \vec{n}_{l}\right), \quad i \neq j \neq l=1, \ldots, k \\
\nu_{i j} & =\sum_{\alpha} R^{\alpha^{2}} \operatorname{det}^{2}\left(\vec{n}_{i}, \vec{n}_{j}, \vec{m}^{\alpha}\right) \\
k_{i} & =\sum_{\alpha \neq \beta} R^{\alpha^{2}} R^{\beta^{2}} \operatorname{det}^{2}\left(\vec{n}_{i}, \vec{m}_{\alpha}, \vec{m}^{\beta}\right) \tag{5.48}
\end{align*}
$$

We now have the options to either use the ansatz of many $U(1) \mathrm{s}$ (ref. [12])

$$
\begin{equation*}
\zeta^{i}=R^{i} e^{i \omega_{i} t}, \quad i=1, \ldots, k \tag{5.49}
\end{equation*}
$$

or to form 4-complex vectors of $q_{j}, j=1,2,3,4$ components, of $q_{j} \zeta^{i} \mathrm{~s} j=1,2,3,4$ which possess only four different \vec{n}_{i} say $q_{1} \vec{n}_{1}$'s, $q_{2} \vec{n}_{2}$'s and we make the ansatz:

$$
\begin{align*}
\vec{w}_{1} & =\left(\zeta^{1}, \zeta^{2}, \ldots, \zeta^{q_{1}}\right) e^{i \vec{n}_{1} \cdot \vec{\xi}} \\
\vec{w}_{2} & =\left(\zeta^{q_{1}+1}, \ldots, \zeta^{q_{1}+q_{2}}\right) e^{i \vec{n}_{2} \cdot \vec{\xi}} \\
\vec{w}_{3} & =\left(\zeta^{q_{1}+q_{2}+1}, \ldots, \zeta^{q_{1}+q_{2}+q_{3}}\right) e^{i \vec{n}_{3} \cdot \vec{\xi}} \tag{5.50}\\
\vec{w}_{4} & =\left(\zeta^{q_{1}+q_{2}+q_{3}+1}, \ldots, \zeta^{k}\right) e^{i \vec{n}_{4} \cdot \vec{\xi}} \\
k & =q_{1}+q_{2}+q_{3}+q_{4}
\end{align*}
$$

The resulting Hamiltonian is:

$$
\begin{align*}
H= & \frac{T_{3}}{2}(2 \pi)^{3}\left[\sum_{i=1}^{4}\left(\dot{r}_{i}^{2}+\frac{T_{i}^{2}}{r_{i}^{2}}\right)+\frac{1}{6} \sum_{i \neq j \neq k=1}^{4} \lambda_{i j k} r_{i}^{2} r_{j}^{2} r_{k}^{2}\right. \\
& +\frac{1}{2} \sum_{i \neq j=1}^{4} \nu_{i j} r_{i}^{2} r_{j}^{2}+\frac{1}{2} \sum_{i=1}^{4} k_{i} r_{i}^{2} \tag{5.51}
\end{align*}
$$

where $r_{i}^{2}=\left|\overrightarrow{w_{i}}\right|^{2}$, and

$$
\begin{equation*}
\left|\dot{\vec{w}}_{i}\right|^{2}=\dot{r}_{i}^{2}+\frac{T_{i}^{2}}{r_{i}^{2}}, \quad i=1,2,3,4 \tag{5.52}
\end{equation*}
$$

with T_{i}^{2} being the $U\left(q_{i}\right), i=1,2,3,4$ Casimirs . The time dependence of the ansatz is given by:

$$
\begin{equation*}
\vec{w}_{i}(t)=e^{i \Omega_{i} \cdot t} \vec{w}_{i}(o), \quad i=1,2,3,4 \tag{5.53}
\end{equation*}
$$

with Ω_{i} being the generators of $U\left(q_{i}\right)$. By diagonalizing the Ω_{i} as in the case of T^{2} in the appropriate complex planes of $\vec{w}_{i} \mathrm{~s}$ we get from the eqs of motion

$$
\begin{align*}
\omega_{1}^{2}= & \frac{1}{3}\left(\lambda_{123} r_{2}^{2} r_{3}^{2}+\lambda_{134} r_{3}^{2} r_{4}^{2}\right) \\
& +\nu_{12} r_{2}^{2}+\nu_{13} r_{3}^{2}+\nu_{14} r_{4}^{2}+k_{1} \tag{5.54}
\end{align*}
$$

and cyclically for the other indices $i=1,2,3,4$.
These relations correspond to nothing else but the minimization conditions for the effective potential (rel.5.2.16) (since $T_{i}^{2}=\omega_{i}^{2} r_{i}^{4}$)

$$
\begin{equation*}
V_{\text {eff }}=H-\frac{(2 \pi)^{3}}{2} T_{3} \sum_{i=1}^{4} \dot{r}_{i}^{2} \tag{5.55}
\end{equation*}
$$

For the completely symmetric T^{3} with symmetric initial conditions, (which can be satisfied if $\left.\vec{n}_{1}+\vec{n}_{2}+\vec{n}_{3}+\vec{n}_{4}=0\right), T_{i}=T, k_{i}=k, \nu_{i j}=\nu, \lambda_{i j k}=\lambda, i \neq j \neq k=1,2,3,4$ we obtain

$$
\begin{equation*}
T^{2}=r^{4}\left(\lambda r^{4}+\nu r^{2}+k\right) \tag{5.56}
\end{equation*}
$$

setting $r^{2}=u$ we obtain the 4 rth order polynomial equation

$$
\begin{equation*}
T^{2}=\lambda u^{4}+\nu u^{3}+k u^{2} \tag{5.57}
\end{equation*}
$$

which can be solved by quadratures. Indeed there exist two real roots for u (one positive and one negative) as well as a pair of complex conjugate roots, for any positive T^{2}, λ, ν, k. The energy of the configurations is expressed in terms only of λ, ν, k through the positive root u_{s} of (5.57) ($u_{s}=r_{s}^{2}$)

$$
\begin{equation*}
E_{s}=\frac{T_{3}}{2}(2 \pi)^{3}\left[\frac{14}{3} u_{s}^{3}+15 \nu u_{s}^{2}+6 k u_{s}\right] \tag{5.58}
\end{equation*}
$$

For large values of the angular momenta $T^{2} \rightarrow \infty$ the energy scales as:

$$
\begin{equation*}
E \sim\left(\lambda T^{2}\right)^{3 / 4} \tag{5.59}
\end{equation*}
$$

6. Interpretation of the results - conclusions

We have been working in this paper with the Light Cone Gauge fixed Hamiltonian of the Nambu-Goto p -branes. The target space dimensions for various $\mathrm{p}, p=1,2,3, \ldots$ are restricted by target space and k -world volume supersymmetry in order that physical bosonic and fermionic degrees to match. The relevant brane scan determines these dimensions. For $p=1, D=3,4,6,10$ for $p=2, D=4,5,7,11$, for $p=3, D=6,8$ and $p=4, D=9$ and finally $p=5, D=10$. If one adds gauge and tensor fields on the world volume of the branes there are additional restrictions [16]. In this case the p-branes are charged under the gauge groups. For compact p-branes the total charge must be zero(Gauss-Law).

With the advent of D_{p}-branes [9] it was understood that there are solitonic objects of type IIA-B superstring theories in $D=10$, where for IIA theories $p=0,2,4,6,8$ carrying NS-NS charges and for IIB theories $p=1,3,5,7,9$ carrying RR charges respectively. The most intriguing ones are of the IIA type $p=2$ super D-membrane and of the type IIB $p=3$ selfdual one along with the $p=5$ famous fivebrane. The D-branes apart from being the sought after sources of RR and NS charges they have more degrees of freedom, the various p-form gauge world volume fields. Although so rich in structure and so well studied they have infinite extent (infinite charge and energy). Their finite (charge and energy) cousins (the Nambu-Goto p-branes) still escape our ability to describe them dynamically (unless compactified on various compact submanifolds) due to strong string coupling.

Our solutions are not charged but if we turn on the 11-dim flux field then the total charge becomes zero but with the dipole and multipole moments non-zero. In the latter case the equations of motion get modified. The simplest case is the 11dim. pp-wave background with a constant flux [5]

In a relatively recent work J.J. Rousso et.al. (15) studied rotating toroidal p-branes (Nambu-Goto ones) and observed that they represent type IIA-B solitons. Essentially the argument for type IIA is that the tension T_{2} of the $p=2$ membrane compactified from $D=11$ dim. by double dimensional reduction to $D=10$ on a circle of radius R_{10} goes like $T_{2}=\frac{T}{g_{I I A}}$ for fixed string tension T. Similarly one has $T_{2}=\frac{T}{g_{I I B}}$ for type IIB string theory which is compactified directly from $D=11$ to $D=9$ on a Torus $T^{2}=S^{1} \times S^{1}$ followed by a T-duality on the second S^{1}. In the above work the solutions are found in a covariant gauge $X^{o}=P \cdot \tau$ and there are constraints which cannot be solved except for in some special cases.

In our examples (ch. 4-5) the rotating $p=2$ solutions are given in the light-cone gauge where the constraints are solved automatically by the ansatz. The nice arguments of J.J.Rousso et.al. for the solitonic character of the $p=2$ Toroidal membranes go through also in our case. Moreover we presented new results for S^{3}, T^{3} spinning $p=3$ branes. We would like to call these solutions massive giant gravitons of flat spacetimes. Our solutions are embedable in lightcone pp-wave backgrounds with fluxes. On these problems we are currently at work. More general backgrounds like $G_{2}, \operatorname{Ad} S^{7} \times S^{4}$ etc. are expected to host such solutions although in these cases the constraints in general cannot be solved 14, 23, (24).

In conclusion, we have constructed new spinning $p=2, S^{2}, T^{2}$ and $p=3, S^{3}, T^{3}$

Nambu-Goto p-branes which behave like Eulers Tops with higher rotational symmetries $\prod_{i}\left(S O\left(q_{i}\right)\right)$ or $\prod_{i}\left(S U\left(q_{i}\right)\right)$ respectively. This is due to the balancing out of the attractive brane-tension forces in higher dimensions by the repulsive effect of rotation alone for S^{2}, S^{3} and in conjunction with the induced harmonic forces arising from Toroidal Compactifications for T^{2}, T^{3}. The minimization of the energy led to its unique scaling with the angular momenta (and for T^{2}, T^{3} from the winding). For the case of T^{2} (and presumably T^{3}) the energy has solitonic dependence on type IIA, IIB string couplings. These solutions can be thought of as particle like objects with quantum numbers $\prod_{i} S O\left(q_{i}\right)$ for S^{2}, S^{3} and $\prod_{i} U\left(q_{i}\right)$ for T^{2}, T^{3}. For the case of completely symmetric configurations S^{2}, S^{3} or T^{2}, T^{3} (same radii in all dimensions) the equilibrium eqs. can be solved analytically by elliptic integrals as well as the angular velocities time dependence. These configurations, however, are only excitations of the Euler Tops.

One of the many interesting open questions is the Matrix model construction and the corresponding Euler-Top solutions in flat or pp-wave backgrounds for p-branes. There are several attempts [13, [14], but we think that more drastic propositions like the works of H.Awata et.al in (17] should be given more attention [25] Among possible interesting applications would be a spinning brane-world scenario for both S^{3} and T^{3} solutions.

Acknowledgments

For discussions we thank A.Kehagias and A.Petkou. We thank C.Kokorelis for collaboration in the initial phases of the work. The research of both M.A. and E.F. was partially supported by E.U. grants: MRTN-CT-2004-512194-503369.

References

[1] J.M. Maldacena, The large- N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 Int. J. Theor. Phys. 38 (1999) 1113 hep-th/9711200; O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large- N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 hep-th/9905111;
D. Berenstein, J.M. Maldacena and H. Nastase, Strings in flat space and pp waves from $N=4$ super Yang-Mills, JHEP 04 (2002) 013 hep-th/0202021;
H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and $1 / 2$ BPS geometries, JHEP 10 (2004) 025 hep-th/0409174.
[2] G. 't Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026;
D. Bigatti and L. Susskind, TASI lectures on the holographic principle, hep-th/0002044,
A. Matusis, L. Susskind and N. Toumbas, The $I R / U V$ connection in the non-commutative gauge theories, JHEP 12 (2000) 002 hep-th/0002075;
N. Seiberg, L. Susskind and N. Toumbas, Space/time non-commutativity and causality, JHEP 06 (2000) 044 hep-th/0005015;
L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377 hep-th/9409089;
R. Bousso, The holographic principle, Rev. Mod. Phys. 74 (2002) 825 hep-th/0203101;
G. 't Hooft, The holographic principle: opening lecture, hep-th/0003004;
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 hep-th/9802150;
D. Berenstein, Shape and holography: studies of dual operators to giant gravitons, Nucl. Phys. B 675 (2003) 179 hep-th/0306090.
[3] N. Beisert, C. Kristjansen, J. Plefka and M. Staudacher, BMN gauge theory as a quantum mechanical system, Phys. Lett. B 558 (2003) 229 hep-th/0212269;
J.C. Plefka, Lectures on the plane-wave string/gauge theory duality, Fortschr. Phys. 52 (2004) 264 hep-th/0307101;
C.G. Callan Jr., J. Heckman, T. McLoughlin and I.J. Swanson, Lattice super Yang-Mills: a virial approach to operator dimensions, Nucl. Phys. B 701 (2004) 180 hep-th/0407096.
[4] J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from anti-de Sitter space, JHEP 06 (2000) 008 hep-th/0003075;
M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and Goliath, JHEP 08 (2000) 040 hep-th/0008015;
A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in $A d S$ and their field theory dual, JHEP 08 (2000) 051 hep-th/0008016;
S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual $N=4$ SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 hep-th/0111222.
[5] J.M. Maldacena, M.M. Sheikh-Jabbari and M. Van Raamsdonk, Transverse fivebranes in matrix theory, JHEP 01 (2003) 038 hep-th/0211139;
D. Sadri and M.M. Sheikh-Jabbari, Giant hedge-hogs: spikes on giant gravitons, Nucl. Phys. B 687 (2004) 161 hep-th/0312155;
M.M. Sheikh-Jabbari, Tiny graviton matrix theory: $D L C Q$ of IIB plane-wave string theory, a conjecture, JHEP 09 (2004) 017 hep-th/0406214.
[6] D.Z. Freedman, G.W. Gibbons and M. Schnabl, Matrix cosmology, AIP Conf. Proc. 743 (2005) 286 hep-th/0411119;
R.A. Battye, G.W. Gibbons and P.M. Sutcliffe, Central configurations in three dimensions, Proc. Roy. Soc. Lond. A459 (2003) 911 hep-th/0201101.
[7] G.W. Gibbons and C.E. Patricot, Newton-Hooke space-times, Hpp-waves and the cosmological constant, Class. and Quant. Grav. 20 (2003) 5225 hep-th/0308200.
[8] P.A. Collins and R.W. Tucker, Classical and quantum mechanics of free relativistic membranes, Nucl. Phys. B 112 (1976) 150;
K. Kikkawa and M. Yamasaki, Can the membrane be a unification model?, Prog. Theor. Phys. 76 (1986) 1379;
J. Hoppe and H. Nicolai, Relativistic minimal surfaces, Phys. Lett. B 196 (1987) 451;
I. Bars, C.N. Pope and E. Sezgin, Massless spectrum and critical dimension of the supermembrane, Phys. Lett. B 198 (1987) 455.
[9] Polchinsky, String theory vol.1-2, Cambridge Univ. Press. (1998).
[10] P.K. Townsend, The eleven-dimensional supermembrane revisited, Phys. Lett. B 350 (1995) 184 hep-th/9501068;
E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 hep-th/9503124;
T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M-theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 hep-th/9610043;
N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large- N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 hep-th/9612115.
[11] R.R. Metsaev, Supersymmetric D3 brane and $N=4$ SYM actions in plane wave backgrounds, Nucl. Phys. B 655 (2003) 3 hep-th/0211178;
K. Dasgupta, M.M. Sheikh-Jabbari and M. Van Raamsdonk, Matrix perturbation theory for M-theory on a pp-wave, JHEP 05 (2002) 056 hep-th/0205185.
[12] M. Axenides, e.g. Floratos and L. Perivolaropoulos, Quadrupole instabilities of relativistic rotating membranes, Phys. Rev. D 64 (2001) 107901 hep-th/0105292.
[13] S. Ramgoolam, On spherical harmonics for fuzzy spheres in diverse dimensions, Nucl. Phys.
B 610 (2001) 461 hep-th/0105006;
Z. Guralnik and S. Ramgoolam, On the polarization of unstable D0-branes into non-commutative odd spheres, JHEP 02 (2001) 032 hep-th/0101001.
[14] M. Alishahiha and M. Ghasemkhani, Orbiting membranes in M-theory on $A d S_{7} \times S^{4}$ background, JHEP 08 (2002) 046 hep-th/0206237;
P. Bozhilov, Rotating strings and D2-branes in type-IIA reduction of M-theory on G_{2} manifold and their semiclassical limits, JHEP 08 (2006) 029 hep-th/0605157; Exact rotating membrane solutions on a G_{2} manifold and their semiclassical limits, JHEP 03 (2006) 001 hep-th/0511253; Membrane solutions in M-theory, JHEP 08 (2005) 087 hep-th/0507149; M2-brane solutions in $A d S_{7} \times S^{4}$, JHEP 10 (2003) 032 hep-th/0309215;
J. Hoppe and S. Theisen, Spinning membranes on $A d S_{p} \times S^{q}$, hep-th/0405170;
S. Arapoglu, N.S. Deger, A. Kaya, E. Sezgin and P. Sundell, Multi-spin giants, Phys. Rev. D 69 (2004) 106006 hep-th/0312191;
M.M. Sheikh-Jabbari and M. Torabian, Classification of all 1/2 BPS solutions of the tiny graviton matrix theory, JHEP 04 (2005) 001 hep-th/0501001.
[15] J. Brugues, J. Rojo and J.G. Russo, Non-perturbative states in type-II superstring theory from classical spinning membranes, Nucl. Phys. B 710 (2005) 117 hep-th/0408174.
[16] M.J. Duff, P.S. Howe, T. Inami and K.S. Stelle, Superstrings in $D=10$ from supermembranes in $D=11$, Phys. Lett. B 191 (1987) 70;
E. Bergshoeff, E. Sezgin, Y. Tanii and P.K. Townsend, Super p-branes as gauge theories of volume preserving diffeomorphisms, Ann. Phys. (NY) 199 (1990) 340;
M.J. Duff, Supermembranes, hep-th/9611203;
B. de Wit, J. Hoppe and H. Nicolai, On the quantum mechanics of supermembranes, Nucl. Phys. B 305 (1988) 545;
For a more recent review see W. Taylor, M(atrix) theory: matrix quantum mechanics as a fundamental theory, Rev. Mod. Phys. 73 (2001) 419 hep-th/0101126.
[17] Y. Nambu, Generalized hamiltonian dynamics, Phys. Rev. D 7 (1973) 2405; Hamilton-Jacobi formalism for strings, Phys. Lett. B 92 (1980) 327;
T. Curtright and C.K. Zachos, Quantizing Dirac and Nambu brackets, AIP Conf. Proc. 672 (2003) 165 hep-th/0303088; Classical and quantum Nambu mechanics, Phys. Rev. D 68 (2003) 085001 hep-th/0212267;
L. Takhtajan, On foundation of the generalized Nambu mechanics (second version), Commun. Math. Phys. 160 (1994) 295 hep-th/9301111;
R. Chatterjee and L. Takhtajan, Aspects of classical and quantum Nambu mechanics, Lett. Math. Phys. 37 (1996) 475 hep-th/9507125];
J. Hoppe, On M-algebras, the quantisation of Nambu-mechanics and volume preserving diffeomorphisms, Helv. Phys. Acta 70 (1997) 302 hep-th/9602020;
H. Awata, M. Li, D. Minic and T. Yoneya, On the quantization of Nambu brackets, JHEP 02 (2001) 013 hep-th/9906248;
C.K. Zachos, Membranes and consistent quantization of Nambu dynamics, Phys. Lett. B 570 (2003) 82 hep-th/0306222.
[18] J. Goldstone and C.L. Gardner, The quantum bubble, MIT, Dept. of Physics Report, June 1981;
J. Hoppe, Quantum theory of a relativistic surface, MIT, Ph.D. Thesis (1981).
[19] G.K. Savvidy, Yang-Mills classical mechanics as a Kolmogorov K system, Phys. Lett. B 130 (1983) 303; Classical and quantum mechanics of nonabelian gauge fields, Nucl. Phys. B 246 (1984) 302 .
[20] H.Goldstein, Classical mechanics, 3rd ed., Addison Wesley (2002).
[21] I.W. Taylor and M. Van Raamsdonk, Angular momentum and long-range gravitational interactions in matrix theory, Nucl. Phys. B 532 (1998) 227 hep-th/9712159;
S.-J. Rey, Gravitating M(atrix) Q-balls, hep-th/9711081;
R.-G. Cai and K.-S. Soh, Critical behavior in the rotating D-branes, Mod. Phys. Lett. A 14 (1999) 1895 hep-th/9812121;
T. Harmark and N.A. Obers, Phase structure of non-commutative field theories and spinning brane bound states, JHEP 03 (2000) 024 hep-th/9911169;
D. Mateos, S. Ng and P.K. Townsend, Tachyons, supertubes and brane/anti-brane systems, JHEP 03 (2002) 016 hep-th/0112054;
J. Arnlind and J. Hoppe, More membrane matrix model solutions, - and minimal surfaces in S^{7}, hep-th/0312062.
[22] T. Harmark and K.G. Savvidy, Ramond-Ramond field radiation from rotating ellipsoidal membranes, Nucl. Phys. B 585 (2000) 567 hep-th/0002157;
K.G. Savvidy and G.K. Savvidy, Stability of the rotating ellipsoidal D0-brane system, Phys. Lett. B 501 (2001) 283 hep-th/0009029;
K.G. Savvidy, The discrete spectrum of the rotating brane, hep-th/0004113;
G.K. Savvidy, D0-branes with non-zero angular momentum, hep-th/0108233.
[23] S. Uehara and S. Yamada, From supermembrane to super Yang-Mills theory, Nucl. Phys. B 696 (2004) 36 hep-th/0405037.
[24] T. Yoneya, From wrapped supermembrane to M(atrix) theory, hep-th/0210243;
M. Cvetič, G.W. Gibbons, H. Lu and C.N. Pope, Rotating black holes in gauged supergravities: thermodynamics, supersymmetric limits, topological solitons and time machines, hep-th/0504080;
H. Shin and K. Yoshida, Thermodynamic behavior of fuzzy membranes in PP-wave matrix model, Phys. Lett. B 627 (2005) 188 hep-th/0507029;
N. Nakayama, K. Sugiyama and K. Yoshida, Ground state of supermembrane on pp-wave, Phys. Rev. D 68 (2003) 026001 hep-th/0209081;
S.A. Hartnoll and C. Núñez, Rotating membranes on G_{2} manifolds, logarithmic anomalous dimensions and $N=1$ duality, JHEP 02 (2003) 049 hep-th/0210218;
P.S. Howe and E. Sezgin, The supermembrane revisited, Class. and Quant. Grav. 22 (2005) 2167 hep-th/0412245;
S. Arapoglu, N.S. Deger, A. Kaya, E. Sezgin and P. Sundell, Multi-spin giants, Phys. Rev. D 69 (2004) 106006 hep-th/0312191;
P. Bozhilov, Exact brane solutions in curved backgrounds, hep-th/0108162.
[25] M. Cederwall, Thoughts on membranes, matrices and non-commutativity, hep-th/0410110.

